• Previous Article
    A unified parameter identification method for nonlinear time-delay systems
  • JIMO Home
  • This Issue
  • Next Article
    Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase
April  2013, 9(2): 455-470. doi: 10.3934/jimo.2013.9.455

Second-order weak composed epiderivatives and applications to optimality conditions

1. 

College of Sciences, Chongqing Jiaotong University, Chongqing, 400074, China, China

2. 

Research Institute of Information and System Computation Science, Beifang University of Nationalities, Yinchuan, 750021, China

Received  April 2011 Revised  January 2013 Published  February 2013

In this paper, one introduces the second-order weak composed contingent epiderivative of set-valued maps, and discusses some of its properties. Then, by virtue of the second-order weak composed contingent epiderivative, necessary optimality conditions and sufficient optimality conditions are obtained for set-valued optimization problems. As consequences, recent existing results are derived. Several examples are provided to show the main results obtained.
Citation: Qilin Wang, Xiao-Bing Li, Guolin Yu. Second-order weak composed epiderivatives and applications to optimality conditions. Journal of Industrial & Management Optimization, 2013, 9 (2) : 455-470. doi: 10.3934/jimo.2013.9.455
References:
[1]

J.-P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions,, in, 7a (1981), 159.   Google Scholar

[2]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Systems & Control: Foundations & Applications, 2 (1990).   Google Scholar

[3]

H. W. Corley, Optimality condition for maximizations of set-valued functions,, J. Optim. Theory Appl., 58 (1988), 1.  doi: 10.1007/BF00939767.  Google Scholar

[4]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization,, Math. Methods Oper. Res., 46 (1997), 193.  doi: 10.1007/BF01217690.  Google Scholar

[5]

G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems. Set-valued optimization,, Math. Methods Oper. Res., 48 (1998), 187.  doi: 10.1007/s001860050021.  Google Scholar

[6]

E. M. Bednarczuk and W. Song, Contingent epiderivative and its applications to set-valued optimization,, Control Cybernet., 27 (1998), 375.   Google Scholar

[7]

G. Bigi and M. Castellani, K-epiderivatives for set-valued functions and optimization,, Math. Methods Oper. Res., 55 (2002), 401.  doi: 10.1007/s001860200187.  Google Scholar

[8]

X.-H. Gong, H.-B. Dong and S.-Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization,, J. Math. Anal. Appl., 284 (2003), 332.  doi: 10.1016/S0022-247X(03)00360-3.  Google Scholar

[9]

J. Jahn and A. A. Khan, Generalized contingent epiderivatives in set-valued optimization: Optimality conditions,, Numer. Funct. Anal. Optim., 23 (2002), 807.  doi: 10.1081/NFA-120016271.  Google Scholar

[10]

J.-P. Penot, Second-order conditions for optimization problems with constraints,, SIAM J. Control Optim., 37 (1999), 303.  doi: 10.1137/S0363012996311095.  Google Scholar

[11]

J. F. Bonnans, R. Cominetti and A. Shapiro, Second-order optimality conditions based on parabolic second-order tangent sets,, SIAM J. Optim., 9 (1999), 466.  doi: 10.1137/S1052623496306760.  Google Scholar

[12]

B. Jiménez and V. Novo, Second-order necessary conditions in set constrained differentiable vector optimization,, Math. Methods Oper. Res., 58 (2003), 299.  doi: 10.1007/s001860300283.  Google Scholar

[13]

B. Jiménez and V. Novo, Optimality conditions in differentiable vector optimization via second-order tangent sets,, Appl. Math. Optim., 49 (2004), 123.  doi: 10.1007/s00245-003-0782-6.  Google Scholar

[14]

J. Jahn, A. A. Khan and P. Zeilinger, Second-order optimality conditions in set optimalization,, J. Optim. Theory Appl., 125 (2005), 331.  doi: 10.1007/s10957-004-1841-0.  Google Scholar

[15]

M. Durea, First and second order optimality conditions for set-valued optimization problems,, Rend. Circ. Mat. Palermo (2), 53 (2004), 451.  doi: 10.1007/BF02875738.  Google Scholar

[16]

G. Bigi, On sufficient second order optimality conditions in multiobjective optimization,, Math. Methods Oper. Res., 63 (2006), 77.  doi: 10.1007/s00186-005-0013-9.  Google Scholar

[17]

L. Rodríguez-Marín and M. Sama, About contingent epiderivatives,, J. Math. Anal. Appl., 327 (2007), 745.  doi: 10.1016/j.jmaa.2006.04.060.  Google Scholar

[18]

S. J. Li, S. K. Zhu and K. L. Teo, New generalized second-order contingent epiderivatives and set-valued optimization problems,, J. Optim. Theory Appl., 152 (2012), 587.  doi: 10.1007/s10957-011-9915-2.  Google Scholar

[19]

S. J. Li and C. R. Chen, Higher-order optimality conditions for Henig efficient solutions in set-valued optimization,, J. Math. Anal. Appl., 323 (2006), 1184.  doi: 10.1016/j.jmaa.2005.11.035.  Google Scholar

[20]

S. J. Li, K. L. Teo and X. Q. Yang, Higher-order optimality conditions for set-valued optimization,, J. Optim. Theory Appl., 137 (2008), 533.  doi: 10.1007/s10957-007-9345-3.  Google Scholar

[21]

P. Q. Khanh and N. D. Tuan, Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimalization,, J. Optim. Theory Appl., 139 (2008), 243.  doi: 10.1007/s10957-008-9414-2.  Google Scholar

[22]

C. R. Chen, S. J. Li and K. L. Teo, Higher order weak epiderivatives and applications to duality and optimality conditions,, Comput. Math. Appl., 57 (2009), 1389.  doi: 10.1016/j.camwa.2009.01.012.  Google Scholar

[23]

Q. L. Wang, S. J. Li and K. L. Teo, Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization,, Optim. Lett., 4 (2010), 425.  doi: 10.1007/s11590-009-0170-5.  Google Scholar

[24]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer Series in Operations Research, (2000).   Google Scholar

[25]

J. Jahn, "Vector Optimization. Theory, Applications, and Extensions,", Springer-Verlag, (2004).   Google Scholar

[26]

D. T. Luc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).   Google Scholar

[27]

Z. Li, A theorem of the alternative and its application to the optimization of set-valued maps,, J. Optim. Theory Appl., 100 (1999), 365.  doi: 10.1023/A:1021786303883.  Google Scholar

show all references

References:
[1]

J.-P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions,, in, 7a (1981), 159.   Google Scholar

[2]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Systems & Control: Foundations & Applications, 2 (1990).   Google Scholar

[3]

H. W. Corley, Optimality condition for maximizations of set-valued functions,, J. Optim. Theory Appl., 58 (1988), 1.  doi: 10.1007/BF00939767.  Google Scholar

[4]

J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization,, Math. Methods Oper. Res., 46 (1997), 193.  doi: 10.1007/BF01217690.  Google Scholar

[5]

G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems. Set-valued optimization,, Math. Methods Oper. Res., 48 (1998), 187.  doi: 10.1007/s001860050021.  Google Scholar

[6]

E. M. Bednarczuk and W. Song, Contingent epiderivative and its applications to set-valued optimization,, Control Cybernet., 27 (1998), 375.   Google Scholar

[7]

G. Bigi and M. Castellani, K-epiderivatives for set-valued functions and optimization,, Math. Methods Oper. Res., 55 (2002), 401.  doi: 10.1007/s001860200187.  Google Scholar

[8]

X.-H. Gong, H.-B. Dong and S.-Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization,, J. Math. Anal. Appl., 284 (2003), 332.  doi: 10.1016/S0022-247X(03)00360-3.  Google Scholar

[9]

J. Jahn and A. A. Khan, Generalized contingent epiderivatives in set-valued optimization: Optimality conditions,, Numer. Funct. Anal. Optim., 23 (2002), 807.  doi: 10.1081/NFA-120016271.  Google Scholar

[10]

J.-P. Penot, Second-order conditions for optimization problems with constraints,, SIAM J. Control Optim., 37 (1999), 303.  doi: 10.1137/S0363012996311095.  Google Scholar

[11]

J. F. Bonnans, R. Cominetti and A. Shapiro, Second-order optimality conditions based on parabolic second-order tangent sets,, SIAM J. Optim., 9 (1999), 466.  doi: 10.1137/S1052623496306760.  Google Scholar

[12]

B. Jiménez and V. Novo, Second-order necessary conditions in set constrained differentiable vector optimization,, Math. Methods Oper. Res., 58 (2003), 299.  doi: 10.1007/s001860300283.  Google Scholar

[13]

B. Jiménez and V. Novo, Optimality conditions in differentiable vector optimization via second-order tangent sets,, Appl. Math. Optim., 49 (2004), 123.  doi: 10.1007/s00245-003-0782-6.  Google Scholar

[14]

J. Jahn, A. A. Khan and P. Zeilinger, Second-order optimality conditions in set optimalization,, J. Optim. Theory Appl., 125 (2005), 331.  doi: 10.1007/s10957-004-1841-0.  Google Scholar

[15]

M. Durea, First and second order optimality conditions for set-valued optimization problems,, Rend. Circ. Mat. Palermo (2), 53 (2004), 451.  doi: 10.1007/BF02875738.  Google Scholar

[16]

G. Bigi, On sufficient second order optimality conditions in multiobjective optimization,, Math. Methods Oper. Res., 63 (2006), 77.  doi: 10.1007/s00186-005-0013-9.  Google Scholar

[17]

L. Rodríguez-Marín and M. Sama, About contingent epiderivatives,, J. Math. Anal. Appl., 327 (2007), 745.  doi: 10.1016/j.jmaa.2006.04.060.  Google Scholar

[18]

S. J. Li, S. K. Zhu and K. L. Teo, New generalized second-order contingent epiderivatives and set-valued optimization problems,, J. Optim. Theory Appl., 152 (2012), 587.  doi: 10.1007/s10957-011-9915-2.  Google Scholar

[19]

S. J. Li and C. R. Chen, Higher-order optimality conditions for Henig efficient solutions in set-valued optimization,, J. Math. Anal. Appl., 323 (2006), 1184.  doi: 10.1016/j.jmaa.2005.11.035.  Google Scholar

[20]

S. J. Li, K. L. Teo and X. Q. Yang, Higher-order optimality conditions for set-valued optimization,, J. Optim. Theory Appl., 137 (2008), 533.  doi: 10.1007/s10957-007-9345-3.  Google Scholar

[21]

P. Q. Khanh and N. D. Tuan, Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimalization,, J. Optim. Theory Appl., 139 (2008), 243.  doi: 10.1007/s10957-008-9414-2.  Google Scholar

[22]

C. R. Chen, S. J. Li and K. L. Teo, Higher order weak epiderivatives and applications to duality and optimality conditions,, Comput. Math. Appl., 57 (2009), 1389.  doi: 10.1016/j.camwa.2009.01.012.  Google Scholar

[23]

Q. L. Wang, S. J. Li and K. L. Teo, Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization,, Optim. Lett., 4 (2010), 425.  doi: 10.1007/s11590-009-0170-5.  Google Scholar

[24]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problems,", Springer Series in Operations Research, (2000).   Google Scholar

[25]

J. Jahn, "Vector Optimization. Theory, Applications, and Extensions,", Springer-Verlag, (2004).   Google Scholar

[26]

D. T. Luc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).   Google Scholar

[27]

Z. Li, A theorem of the alternative and its application to the optimization of set-valued maps,, J. Optim. Theory Appl., 100 (1999), 365.  doi: 10.1023/A:1021786303883.  Google Scholar

[1]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[2]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[3]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[4]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[5]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[6]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[7]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[8]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[9]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[10]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[11]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[12]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[13]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[14]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[15]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[16]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[17]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[18]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[19]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[20]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]