-
Previous Article
Optimal portfolio in a continuous-time self-exciting threshold model
- JIMO Home
- This Issue
-
Next Article
Second-order weak composed epiderivatives and applications to optimality conditions
A unified parameter identification method for nonlinear time-delay systems
1. | School of Information Science & Engineering, Central South University, Changsha, China |
2. | Department of Mathematics and Statistics, Curtin University, Perth 6845 |
3. | Department of Mathematics and Statistics, Curtin University, Perth, W.A. 6845 |
4. | School of Information Science and Engineering, Central South University, Changsha, 410083 |
References:
[1] |
N. U. Ahmed, "Dynamic Systems and Control with Applications,", World Scientific Publishing Co. Pte. Ltd., (2006).
|
[2] |
L. Belkoura, J.-P. Richard and M. Fliess, Parameters estimation of systems with delayed and structured entries,, Automatica J. IFAC, 45 (2009), 1117.
doi: 10.1016/j.automatica.2008.12.026. |
[3] |
Q. Q. Chai, C. H. Yang, K. L. Teo and W. H. Gui, Time-delayed optimal control of an industrial-scale evaporation process sodium aluminate solution,, Control Engineering Practice, 20 (2012), 618. Google Scholar |
[4] |
R. Datko, Two examples of ill-posedness with respect to time delays revisited,, IEEE Transactions on Automatic Control, 42 (1997), 511.
doi: 10.1109/9.566660. |
[5] |
L. Denis-Vidal, C. Jauberthie and G. Joly-Blanchard, Identifiability of a nonlinear delayed-differential aerospace model,, IEEE Transactions on Automatic Control, 51 (2006), 154.
doi: 10.1109/TAC.2005.861700. |
[6] |
S. Diop, I. Kolmanovsky, P. E. Moraal and M. V. Nieuwstadt, Preserving stability/performance when facing an unknown time-delay,, Control Engineering Practice, 9 (2001), 1319. Google Scholar |
[7] |
S. V. Drakunov, W. Perruquetti, J. P. Richard and L. Belkoura, Delay identification in time-delay systems using variable structure observers,, Annual Reviews in Control, 30 (2006), 143. Google Scholar |
[8] |
P. J. Gawthrop and M. T. Nihtilä, Identification of time delays using a polynomial identification method,, Systems and Control Letters, 5 (1985), 267.
doi: 10.1016/0167-6911(85)90020-9. |
[9] |
L. Göllmann, D. Kern and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control-state constraints,, Optimal Control Applications and Methods, 30 (2009), 341.
doi: 10.1002/oca.843. |
[10] |
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems,, Dynamics of Continuous, 18 (2011), 59.
|
[11] |
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pacific Journal of Optimization, 7 (2011), 63.
|
[12] |
X. Liu, Constrained control of positive systems with delays,, IEEE Transactions on Automatic Control, 54 (2009), 1596.
doi: 10.1109/TAC.2009.2017961. |
[13] |
R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica, 44 (2008), 2923.
doi: 10.1016/j.automatica.2008.04.011. |
[14] |
R. Loxton, K. L. Teo and V. Rehbock, An optimization approach to state-delay identification,, IEEE Transactions on Automatic Control, 55 (2010), 2113.
doi: 10.1109/TAC.2010.2050710. |
[15] |
R. Loxton, K. L. Teo and V. Rehbock, Robust suboptimal control of nonlinear systems,, Applied Mathematics and Computation, 217 (2011), 6566.
doi: 10.1016/j.amc.2011.01.039. |
[16] |
D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming,", $3^{rd}$ edition, 116 (2008).
|
[17] |
R. B. Martin, Optimal control drug scheduling of cancer chemotherapy,, Automatica J. IFAC, 28 (1992), 1113.
doi: 10.1016/0005-1098(92)90054-J. |
[18] |
F. Pan, R. C. Han and D. M. Feng, "An identification method of time-varying delay based on genetic algorithm,", in Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, (2003), 781. Google Scholar |
[19] |
C. Pignotti, A note on stabilization of locally damped wave equations with time delay,, Systems and Control Letters, 61 (2012), 92.
doi: 10.1016/j.sysconle.2011.09.016. |
[20] |
J.-P. Richard, Time-delay systems: An overview of some recent advances and open problems,, Automatica J. IFAC, 39 (2003), 1667.
doi: 10.1016/S0005-1098(03)00167-5. |
[21] |
R. F. Stengel, R. Ghigliazza, N. Kulkarni and O. Laplace, Optimal control of innate immune response,, Optimal Control Applications and Methods, 23 (2002), 91.
doi: 10.1002/oca.704. |
[22] |
L. Wang, W. Gui, K. L. Teo, R. Loxton and C. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications,, Journal of Industrial and Management Optimization, 5 (2009), 705.
doi: 10.3934/jimo.2009.5.705. |
[23] |
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Optimal control problems arising in the zinc sulphate electrolyte purification process,, Journal of Global Optimization, 54 (2012), 307.
doi: 10.1007/s10898-012-9863-x. |
[24] |
F. Y. Wang and Q. Yu, Optimal protein separations with time lags in control functions,, Journal of Process Control, 4 (1994), 135. Google Scholar |
[25] |
K. H. Wong, L. S. Jennings and F. Benyah, The control parametrization enhancing transform for constrained time-delayed optimal control problems,, ANZIAM Journal, 43 ().
|
[26] |
L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso and C. R. Mirasso, Permutation-information-theory approach to unveil delay dynamics from time-series analysis,, Physical Review E, 82 (2010).
doi: 10.1103/PhysRevE.82.046212. |
show all references
References:
[1] |
N. U. Ahmed, "Dynamic Systems and Control with Applications,", World Scientific Publishing Co. Pte. Ltd., (2006).
|
[2] |
L. Belkoura, J.-P. Richard and M. Fliess, Parameters estimation of systems with delayed and structured entries,, Automatica J. IFAC, 45 (2009), 1117.
doi: 10.1016/j.automatica.2008.12.026. |
[3] |
Q. Q. Chai, C. H. Yang, K. L. Teo and W. H. Gui, Time-delayed optimal control of an industrial-scale evaporation process sodium aluminate solution,, Control Engineering Practice, 20 (2012), 618. Google Scholar |
[4] |
R. Datko, Two examples of ill-posedness with respect to time delays revisited,, IEEE Transactions on Automatic Control, 42 (1997), 511.
doi: 10.1109/9.566660. |
[5] |
L. Denis-Vidal, C. Jauberthie and G. Joly-Blanchard, Identifiability of a nonlinear delayed-differential aerospace model,, IEEE Transactions on Automatic Control, 51 (2006), 154.
doi: 10.1109/TAC.2005.861700. |
[6] |
S. Diop, I. Kolmanovsky, P. E. Moraal and M. V. Nieuwstadt, Preserving stability/performance when facing an unknown time-delay,, Control Engineering Practice, 9 (2001), 1319. Google Scholar |
[7] |
S. V. Drakunov, W. Perruquetti, J. P. Richard and L. Belkoura, Delay identification in time-delay systems using variable structure observers,, Annual Reviews in Control, 30 (2006), 143. Google Scholar |
[8] |
P. J. Gawthrop and M. T. Nihtilä, Identification of time delays using a polynomial identification method,, Systems and Control Letters, 5 (1985), 267.
doi: 10.1016/0167-6911(85)90020-9. |
[9] |
L. Göllmann, D. Kern and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control-state constraints,, Optimal Control Applications and Methods, 30 (2009), 341.
doi: 10.1002/oca.843. |
[10] |
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems,, Dynamics of Continuous, 18 (2011), 59.
|
[11] |
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pacific Journal of Optimization, 7 (2011), 63.
|
[12] |
X. Liu, Constrained control of positive systems with delays,, IEEE Transactions on Automatic Control, 54 (2009), 1596.
doi: 10.1109/TAC.2009.2017961. |
[13] |
R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica, 44 (2008), 2923.
doi: 10.1016/j.automatica.2008.04.011. |
[14] |
R. Loxton, K. L. Teo and V. Rehbock, An optimization approach to state-delay identification,, IEEE Transactions on Automatic Control, 55 (2010), 2113.
doi: 10.1109/TAC.2010.2050710. |
[15] |
R. Loxton, K. L. Teo and V. Rehbock, Robust suboptimal control of nonlinear systems,, Applied Mathematics and Computation, 217 (2011), 6566.
doi: 10.1016/j.amc.2011.01.039. |
[16] |
D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming,", $3^{rd}$ edition, 116 (2008).
|
[17] |
R. B. Martin, Optimal control drug scheduling of cancer chemotherapy,, Automatica J. IFAC, 28 (1992), 1113.
doi: 10.1016/0005-1098(92)90054-J. |
[18] |
F. Pan, R. C. Han and D. M. Feng, "An identification method of time-varying delay based on genetic algorithm,", in Proceedings of the 2003 International Conference on Machine Learning and Cybernetics, (2003), 781. Google Scholar |
[19] |
C. Pignotti, A note on stabilization of locally damped wave equations with time delay,, Systems and Control Letters, 61 (2012), 92.
doi: 10.1016/j.sysconle.2011.09.016. |
[20] |
J.-P. Richard, Time-delay systems: An overview of some recent advances and open problems,, Automatica J. IFAC, 39 (2003), 1667.
doi: 10.1016/S0005-1098(03)00167-5. |
[21] |
R. F. Stengel, R. Ghigliazza, N. Kulkarni and O. Laplace, Optimal control of innate immune response,, Optimal Control Applications and Methods, 23 (2002), 91.
doi: 10.1002/oca.704. |
[22] |
L. Wang, W. Gui, K. L. Teo, R. Loxton and C. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications,, Journal of Industrial and Management Optimization, 5 (2009), 705.
doi: 10.3934/jimo.2009.5.705. |
[23] |
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Optimal control problems arising in the zinc sulphate electrolyte purification process,, Journal of Global Optimization, 54 (2012), 307.
doi: 10.1007/s10898-012-9863-x. |
[24] |
F. Y. Wang and Q. Yu, Optimal protein separations with time lags in control functions,, Journal of Process Control, 4 (1994), 135. Google Scholar |
[25] |
K. H. Wong, L. S. Jennings and F. Benyah, The control parametrization enhancing transform for constrained time-delayed optimal control problems,, ANZIAM Journal, 43 ().
|
[26] |
L. Zunino, M. C. Soriano, I. Fischer, O. A. Rosso and C. R. Mirasso, Permutation-information-theory approach to unveil delay dynamics from time-series analysis,, Physical Review E, 82 (2010).
doi: 10.1103/PhysRevE.82.046212. |
[1] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[2] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[3] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[4] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[5] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[6] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[7] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[8] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[9] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[10] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[11] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[12] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[13] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[14] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[15] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[16] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[17] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[18] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[19] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[20] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]