April  2013, 9(2): 487-504. doi: 10.3934/jimo.2013.9.487

Optimal portfolio in a continuous-time self-exciting threshold model

1. 

China Institute for Actuarial Science, Central University of Finance and Economics, Beijing 100081, China

2. 

Department of Actuarial Mathematics and Statistics, and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

3. 

Cass Business School, City University, 106 Bunhill Row, London EC1Y 8TZ, United Kingdom

4. 

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong, China

Received  February 2011 Revised  October 2012 Published  February 2013

This paper discusses an optimal portfolio selection problem in a continuous-time economy, where the price dynamics of a risky asset are governed by a continuous-time self-exciting threshold model. This model provides a way to describe the effect of regime switching on price dynamics via the self-exciting threshold principle. Its main advantage is to incorporate the regime switching effect without introducing an additional source of uncertainty. A martingale approach is used to discuss the problem. Analytical solutions are derived in some special cases. Numerical examples are given to illustrate the regime-switching effect described by the proposed model.
Citation: Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487
References:
[1]

R. J. Elliott and P. E. Kopp, "Mathematics of Financial Markets,", $2^{nd}$ edition, (2005).   Google Scholar

[2]

S. M. Goldfeld and R. E. Quandt, A Markov model for switching regressions,, Journal of Econometrics, 1 (1973), 3.   Google Scholar

[3]

J. D. Hamilton, A new approach to the economic analysis of non-stationary time series and the business cycle,, Econometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[4]

B. G. Jang, H. K. Koo and M. Loewenstein, Liquidity premia and transaction costs,, Journal of Finance, 62 (2007), 2329.   Google Scholar

[5]

I. Karatzas and S. E. Shreve, "Methods of Mathematical Finance,", Applications of Mathematics (New York), 39 (1998).   Google Scholar

[6]

J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets,, Review of Economics and Statistics, 47 (1965), 12.   Google Scholar

[7]

H. M. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.   Google Scholar

[8]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time model,, Review of Economics and Statistics, 51 (1969), 247.   Google Scholar

[9]

R. C. Merton, Optimal consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.   Google Scholar

[10]

J. Mossin, Equilibrium in a capital asset market,, Econometrica, 34 (1966), 768.   Google Scholar

[11]

R. E. Quandt, The estimation of parameters of linear regression system obeying two separate regimes,, Journal of the American Statistical Association, 53 (1958), 873.   Google Scholar

[12]

P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming,, Review of Economics and Statistics, 51 (1969), 239.   Google Scholar

[13]

W. F. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk,, Journal of Finance, 19 (1964), 425.   Google Scholar

[14]

H. Tong, On a threshold model,, in, (1978), 575.   Google Scholar

[15]

H. Tong and K. S. Lim, Threshold autoregression, limit cycles and cyclical data (with discussion),, Journal of Royal Statistical Society - B, 42 (1980), 245.   Google Scholar

[16]

H. Tong, "Threshold Models in Nonlinear Time Series Analysis,", Lecture Notes in Statistics, 21 (1983).  doi: 10.1007/978-1-4684-7888-4.  Google Scholar

[17]

J. L. Treynor, Toward a theory of market value of risky assets,, unpublished manuscript., ().   Google Scholar

[18]

G. Yin and X. Zhou, Markowitz's mean-variance portfolio selection with regime switching: From discrete-time models to their continuous-time limits,, IEEE Transactions on Automatic Control, 49 (2004), 349.  doi: 10.1109/TAC.2004.824479.  Google Scholar

[19]

X. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model,, SIAM Journal on Control and Optimization, 42 (2003), 1466.  doi: 10.1137/S0363012902405583.  Google Scholar

show all references

References:
[1]

R. J. Elliott and P. E. Kopp, "Mathematics of Financial Markets,", $2^{nd}$ edition, (2005).   Google Scholar

[2]

S. M. Goldfeld and R. E. Quandt, A Markov model for switching regressions,, Journal of Econometrics, 1 (1973), 3.   Google Scholar

[3]

J. D. Hamilton, A new approach to the economic analysis of non-stationary time series and the business cycle,, Econometrica, 57 (1989), 357.  doi: 10.2307/1912559.  Google Scholar

[4]

B. G. Jang, H. K. Koo and M. Loewenstein, Liquidity premia and transaction costs,, Journal of Finance, 62 (2007), 2329.   Google Scholar

[5]

I. Karatzas and S. E. Shreve, "Methods of Mathematical Finance,", Applications of Mathematics (New York), 39 (1998).   Google Scholar

[6]

J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets,, Review of Economics and Statistics, 47 (1965), 12.   Google Scholar

[7]

H. M. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.   Google Scholar

[8]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time model,, Review of Economics and Statistics, 51 (1969), 247.   Google Scholar

[9]

R. C. Merton, Optimal consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.   Google Scholar

[10]

J. Mossin, Equilibrium in a capital asset market,, Econometrica, 34 (1966), 768.   Google Scholar

[11]

R. E. Quandt, The estimation of parameters of linear regression system obeying two separate regimes,, Journal of the American Statistical Association, 53 (1958), 873.   Google Scholar

[12]

P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming,, Review of Economics and Statistics, 51 (1969), 239.   Google Scholar

[13]

W. F. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk,, Journal of Finance, 19 (1964), 425.   Google Scholar

[14]

H. Tong, On a threshold model,, in, (1978), 575.   Google Scholar

[15]

H. Tong and K. S. Lim, Threshold autoregression, limit cycles and cyclical data (with discussion),, Journal of Royal Statistical Society - B, 42 (1980), 245.   Google Scholar

[16]

H. Tong, "Threshold Models in Nonlinear Time Series Analysis,", Lecture Notes in Statistics, 21 (1983).  doi: 10.1007/978-1-4684-7888-4.  Google Scholar

[17]

J. L. Treynor, Toward a theory of market value of risky assets,, unpublished manuscript., ().   Google Scholar

[18]

G. Yin and X. Zhou, Markowitz's mean-variance portfolio selection with regime switching: From discrete-time models to their continuous-time limits,, IEEE Transactions on Automatic Control, 49 (2004), 349.  doi: 10.1109/TAC.2004.824479.  Google Scholar

[19]

X. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model,, SIAM Journal on Control and Optimization, 42 (2003), 1466.  doi: 10.1137/S0363012902405583.  Google Scholar

[1]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[2]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[5]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[6]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[7]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[8]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[9]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[10]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[11]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[12]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[13]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[14]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[15]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[16]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[17]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[18]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[19]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[20]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (7)

[Back to Top]