-
Previous Article
Strong duality theorem for multiobjective higher order nondifferentiable symmetric dual programs
- JIMO Home
- This Issue
- Next Article
Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool
1. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China, China |
2. | School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa, South Africa |
References:
[1] |
R. C. Borden, C. A. Gomez and M. T. Becker, Geochemical indicators of intrinsic bioremediation,, Ground Water, 33 (1995), 180.
doi: 10.1111/j.1745-6584.1995.tb00272.x. |
[2] |
T. P. Clement, Generalized solution to multispecies transport equations coupled with a first-order reaction network,, Water Resources Research, 37 (2001), 157.
doi: 10.1029/2000WR900239. |
[3] |
T. P. Clement, C. D. Johnson, Y. Sun, G. M. Klecka and C. Bartlett, Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site,, Journal of Contaminant Hydrology, 42 (2000), 113.
doi: 10.1016/S0169-7722(99)00098-4. |
[4] |
T. P. Clement, Y. Sun, B. S. Hooker and J. N. Petersen, Modeling multispecies reactive transport in ground water,, Ground Water Monitoring & Remediation, 18 (1998), 79.
doi: 10.1111/j.1745-6592.1998.tb00618.x. |
[5] |
M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints,, Journal of Industrial and Management Optimization, 4 (2008), 247.
doi: 10.3934/jimo.2008.4.247. |
[6] |
L. S. Jennings, K. L. Teo, M. E. Fisher and C. J. Goh, MISER3 version 3, Optimal control software : Theory and user manual,, Centre for Applied Dynamics and Optimization, (2004). Google Scholar |
[7] |
K. Kaji and K. H. Wong, Nonlinearly constrained time-delayed optimal control problems,, Journal of Optimization Theory and Applications, 82 (1994), 295.
doi: 10.1007/BF02191855. |
[8] |
H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parametrization enhancing technique for time optimal control problems,, Dynamic Systems and Applications, 6 (1997), 243.
|
[9] |
M. S. Lee, K. K. Lee, Y. Hyun, T. P. Clement and D. Hamilton, Nitrogen transformation and transport modeling in groundwater aquifers,, Ecological Modelling, 192 (2006), 143.
doi: 10.1016/j.ecolmodel.2005.07.013. |
[10] |
B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem,, Journal of Optimization Theory and Applications, 151 (2011), 260.
doi: 10.1007/s10957-011-9904-5. |
[11] |
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pacific Journal of Optimization, 7 (2011), 63.
|
[12] |
R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica, 44 (2008), 2923.
doi: 10.1016/j.automatica.2008.04.011. |
[13] |
M. Lunn, R. J. Lunn and R. Mackayb, Determining analytic solutions of multiple species contaminant transport, with sorption and decay,, Journal of Hydrology, 180 (1996), 195.
doi: 10.1016/0022-1694(95)02891-9. |
[14] |
H. Maurer, C. Büshens, J. H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls,, Optimal Control Applications and Methods, 26 (2005), 129.
doi: 10.1002/oca.756. |
[15] |
D. E. Rice, R. D. Grose, J. C. Michaelsen, B. P. Dooher, D. H. Macqueen, S. J. Cullen, W. E. Kastenberg, L. G. Everett and M. S. Marino, "California Leaking Underground Fuel Tank (LUFT) Historical Case Analyses,", California State Water Resources Publication, (1995). Google Scholar |
[16] |
L. Semprini, P. K. Kitanidis, D. H. Kampbell and J. T. Wilson, Anaerobic transformation of chlorinated aliphatic hydrocarbons in a sand aquifer based on spatial chemical distributions,, Water Resources Research, 31 (1995), 1051.
doi: 10.1029/94WR02380. |
[17] |
H. Tao and X. Liu, An improved control parameterization method for chemical dynamic optimization problems,, World Congress on Intelligent Control and Automation, (2006), 1650. Google Scholar |
[18] |
K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics 55, 55 (1991).
|
[19] |
K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 40 (1999), 314.
doi: 10.1017/S0334270000010936. |
[20] |
K. L. Teo, H. W. J. Lee and V. Rehbock, Control parametrization enhancing technique for time optimal control and optimal three-valued control problems,, Dynamics of Continuous, 4 (1998), 617.
|
[21] |
K. L. Teo, K. H. Wong and D. J. Clements, Optimal control computation for linear time-lag systems with linear terminal constraints,, Journal of Optimization Theory and Applications, 44 (1984), 509.
doi: 10.1007/BF00935465. |
[22] |
L. Y. Wang, W. H. Gui, K. L. Teo, R. C. Loxton and C. H. Yang, Time-delay optimal control problems with multiple characteristic time points: Computation and industrial applications,, Journal of Industrial and Management Optimization, 5 (2009), 705.
doi: 10.3934/jimo.2009.5.705. |
[23] |
K. H. Wong, D. J. Clements and K. L. Teo, Optimal control computation for nonlinear time-lag systems,, Journal of Optimization Theory and Applications, 47 (1985), 91.
doi: 10.1007/BF00941318. |
[24] |
K. H. Wong, L. S. Jennings and F. Benyah, Control parametrization method for free planning time optimal control problems with time-delayed arguments,, Nonlinear Analysis. Theory, 47 (2001), 5679.
doi: 10.1016/S0362-546X(01)00669-1. |
[25] |
K. H. Wong, H. W. J. Lee and C. K. Chan, Control parametrization and finite element method for controlling multi-species reactive transport in a rectangular diffuser unit,, Journal of Optimization Theory and Applications, 150 (2011), 118.
doi: 10.1007/s10957-011-9826-2. |
show all references
References:
[1] |
R. C. Borden, C. A. Gomez and M. T. Becker, Geochemical indicators of intrinsic bioremediation,, Ground Water, 33 (1995), 180.
doi: 10.1111/j.1745-6584.1995.tb00272.x. |
[2] |
T. P. Clement, Generalized solution to multispecies transport equations coupled with a first-order reaction network,, Water Resources Research, 37 (2001), 157.
doi: 10.1029/2000WR900239. |
[3] |
T. P. Clement, C. D. Johnson, Y. Sun, G. M. Klecka and C. Bartlett, Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site,, Journal of Contaminant Hydrology, 42 (2000), 113.
doi: 10.1016/S0169-7722(99)00098-4. |
[4] |
T. P. Clement, Y. Sun, B. S. Hooker and J. N. Petersen, Modeling multispecies reactive transport in ground water,, Ground Water Monitoring & Remediation, 18 (1998), 79.
doi: 10.1111/j.1745-6592.1998.tb00618.x. |
[5] |
M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints,, Journal of Industrial and Management Optimization, 4 (2008), 247.
doi: 10.3934/jimo.2008.4.247. |
[6] |
L. S. Jennings, K. L. Teo, M. E. Fisher and C. J. Goh, MISER3 version 3, Optimal control software : Theory and user manual,, Centre for Applied Dynamics and Optimization, (2004). Google Scholar |
[7] |
K. Kaji and K. H. Wong, Nonlinearly constrained time-delayed optimal control problems,, Journal of Optimization Theory and Applications, 82 (1994), 295.
doi: 10.1007/BF02191855. |
[8] |
H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parametrization enhancing technique for time optimal control problems,, Dynamic Systems and Applications, 6 (1997), 243.
|
[9] |
M. S. Lee, K. K. Lee, Y. Hyun, T. P. Clement and D. Hamilton, Nitrogen transformation and transport modeling in groundwater aquifers,, Ecological Modelling, 192 (2006), 143.
doi: 10.1016/j.ecolmodel.2005.07.013. |
[10] |
B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem,, Journal of Optimization Theory and Applications, 151 (2011), 260.
doi: 10.1007/s10957-011-9904-5. |
[11] |
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pacific Journal of Optimization, 7 (2011), 63.
|
[12] |
R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica, 44 (2008), 2923.
doi: 10.1016/j.automatica.2008.04.011. |
[13] |
M. Lunn, R. J. Lunn and R. Mackayb, Determining analytic solutions of multiple species contaminant transport, with sorption and decay,, Journal of Hydrology, 180 (1996), 195.
doi: 10.1016/0022-1694(95)02891-9. |
[14] |
H. Maurer, C. Büshens, J. H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls,, Optimal Control Applications and Methods, 26 (2005), 129.
doi: 10.1002/oca.756. |
[15] |
D. E. Rice, R. D. Grose, J. C. Michaelsen, B. P. Dooher, D. H. Macqueen, S. J. Cullen, W. E. Kastenberg, L. G. Everett and M. S. Marino, "California Leaking Underground Fuel Tank (LUFT) Historical Case Analyses,", California State Water Resources Publication, (1995). Google Scholar |
[16] |
L. Semprini, P. K. Kitanidis, D. H. Kampbell and J. T. Wilson, Anaerobic transformation of chlorinated aliphatic hydrocarbons in a sand aquifer based on spatial chemical distributions,, Water Resources Research, 31 (1995), 1051.
doi: 10.1029/94WR02380. |
[17] |
H. Tao and X. Liu, An improved control parameterization method for chemical dynamic optimization problems,, World Congress on Intelligent Control and Automation, (2006), 1650. Google Scholar |
[18] |
K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics 55, 55 (1991).
|
[19] |
K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 40 (1999), 314.
doi: 10.1017/S0334270000010936. |
[20] |
K. L. Teo, H. W. J. Lee and V. Rehbock, Control parametrization enhancing technique for time optimal control and optimal three-valued control problems,, Dynamics of Continuous, 4 (1998), 617.
|
[21] |
K. L. Teo, K. H. Wong and D. J. Clements, Optimal control computation for linear time-lag systems with linear terminal constraints,, Journal of Optimization Theory and Applications, 44 (1984), 509.
doi: 10.1007/BF00935465. |
[22] |
L. Y. Wang, W. H. Gui, K. L. Teo, R. C. Loxton and C. H. Yang, Time-delay optimal control problems with multiple characteristic time points: Computation and industrial applications,, Journal of Industrial and Management Optimization, 5 (2009), 705.
doi: 10.3934/jimo.2009.5.705. |
[23] |
K. H. Wong, D. J. Clements and K. L. Teo, Optimal control computation for nonlinear time-lag systems,, Journal of Optimization Theory and Applications, 47 (1985), 91.
doi: 10.1007/BF00941318. |
[24] |
K. H. Wong, L. S. Jennings and F. Benyah, Control parametrization method for free planning time optimal control problems with time-delayed arguments,, Nonlinear Analysis. Theory, 47 (2001), 5679.
doi: 10.1016/S0362-546X(01)00669-1. |
[25] |
K. H. Wong, H. W. J. Lee and C. K. Chan, Control parametrization and finite element method for controlling multi-species reactive transport in a rectangular diffuser unit,, Journal of Optimization Theory and Applications, 150 (2011), 118.
doi: 10.1007/s10957-011-9826-2. |
[1] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[2] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[3] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[4] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[7] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[8] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[9] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[10] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[11] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[12] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[13] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[14] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[15] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[16] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[17] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[18] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[19] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[20] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]