July  2013, 9(3): 505-524. doi: 10.3934/jimo.2013.9.505

Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool

1. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China, China

2. 

School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa, South Africa

Received  October 2011 Revised  October 2012 Published  April 2013

In this paper, we consider an optimal control problem for a cleaning program involving effluent discharge of several species in a circular pool. A computational scheme combining control parametrization and finite element method is used to develop a cleaning program to meet the environmental health requirements. A numerical example is solved to illustrate the efficiency of our method.
Citation: Heung Wing Joseph Lee, Chi Kin Chan, Karho Yau, Kar Hung Wong, Colin Myburgh. Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool. Journal of Industrial and Management Optimization, 2013, 9 (3) : 505-524. doi: 10.3934/jimo.2013.9.505
References:
[1]

R. C. Borden, C. A. Gomez and M. T. Becker, Geochemical indicators of intrinsic bioremediation, Ground Water, 33 (1995), 180-189. doi: 10.1111/j.1745-6584.1995.tb00272.x.

[2]

T. P. Clement, Generalized solution to multispecies transport equations coupled with a first-order reaction network, Water Resources Research, 37 (2001), 157-163. doi: 10.1029/2000WR900239.

[3]

T. P. Clement, C. D. Johnson, Y. Sun, G. M. Klecka and C. Bartlett, Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site, Journal of Contaminant Hydrology, 42 (2000), 113-140. doi: 10.1016/S0169-7722(99)00098-4.

[4]

T. P. Clement, Y. Sun, B. S. Hooker and J. N. Petersen, Modeling multispecies reactive transport in ground water, Ground Water Monitoring & Remediation, 18 (1998), 79-92. doi: 10.1111/j.1745-6592.1998.tb00618.x.

[5]

M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270. doi: 10.3934/jimo.2008.4.247.

[6]

L. S. Jennings, K. L. Teo, M. E. Fisher and C. J. Goh, MISER3 version 3, Optimal control software : Theory and user manual, Centre for Applied Dynamics and Optimization, The University of Western Australia, 2004. http://school.maths.uwa.edu.au/les/miser/manual.html.

[7]

K. Kaji and K. H. Wong, Nonlinearly constrained time-delayed optimal control problems, Journal of Optimization Theory and Applications, 82 (1994), 295-313. doi: 10.1007/BF02191855.

[8]

H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6 (1997), 243-262.

[9]

M. S. Lee, K. K. Lee, Y. Hyun, T. P. Clement and D. Hamilton, Nitrogen transformation and transport modeling in groundwater aquifers, Ecological Modelling, 192 (2006), 143-159. doi: 10.1016/j.ecolmodel.2005.07.013.

[10]

B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291. doi: 10.1007/s10957-011-9904-5.

[11]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems, Pacific Journal of Optimization, 7 (2011), 63-81.

[12]

R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929. doi: 10.1016/j.automatica.2008.04.011.

[13]

M. Lunn, R. J. Lunn and R. Mackayb, Determining analytic solutions of multiple species contaminant transport, with sorption and decay, Journal of Hydrology, 180 (1996), 195-210. doi: 10.1016/0022-1694(95)02891-9.

[14]

H. Maurer, C. Büshens, J. H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods, 26 (2005), 129-156. doi: 10.1002/oca.756.

[15]

D. E. Rice, R. D. Grose, J. C. Michaelsen, B. P. Dooher, D. H. Macqueen, S. J. Cullen, W. E. Kastenberg, L. G. Everett and M. S. Marino, "California Leaking Underground Fuel Tank (LUFT) Historical Case Analyses," California State Water Resources Publication, UCRL-AR-122206, 1995.

[16]

L. Semprini, P. K. Kitanidis, D. H. Kampbell and J. T. Wilson, Anaerobic transformation of chlorinated aliphatic hydrocarbons in a sand aquifer based on spatial chemical distributions, Water Resources Research, 31 (1995), 1051-1062. doi: 10.1029/94WR02380.

[17]

H. Tao and X. Liu, An improved control parameterization method for chemical dynamic optimization problems, World Congress on Intelligent Control and Automation, WCICA, (2006), 1650-1653.

[18]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics 55, Longman Scientific & Technical, 1991.

[19]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 40 (1999), 314-335. doi: 10.1017/S0334270000010936.

[20]

K. L. Teo, H. W. J. Lee and V. Rehbock, Control parametrization enhancing technique for time optimal control and optimal three-valued control problems, Dynamics of Continuous, Discrete and Impulsive Systems, 4 (1998), 617-631.

[21]

K. L. Teo, K. H. Wong and D. J. Clements, Optimal control computation for linear time-lag systems with linear terminal constraints, Journal of Optimization Theory and Applications, 44 (1984), 509-526. doi: 10.1007/BF00935465.

[22]

L. Y. Wang, W. H. Gui, K. L. Teo, R. C. Loxton and C. H. Yang, Time-delay optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705-718. doi: 10.3934/jimo.2009.5.705.

[23]

K. H. Wong, D. J. Clements and K. L. Teo, Optimal control computation for nonlinear time-lag systems, Journal of Optimization Theory and Applications, 47 (1985), 91-107. doi: 10.1007/BF00941318.

[24]

K. H. Wong, L. S. Jennings and F. Benyah, Control parametrization method for free planning time optimal control problems with time-delayed arguments, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 47 (2001), 5679-5690. doi: 10.1016/S0362-546X(01)00669-1.

[25]

K. H. Wong, H. W. J. Lee and C. K. Chan, Control parametrization and finite element method for controlling multi-species reactive transport in a rectangular diffuser unit, Journal of Optimization Theory and Applications, 150 (2011), 118-141. doi: 10.1007/s10957-011-9826-2.

show all references

References:
[1]

R. C. Borden, C. A. Gomez and M. T. Becker, Geochemical indicators of intrinsic bioremediation, Ground Water, 33 (1995), 180-189. doi: 10.1111/j.1745-6584.1995.tb00272.x.

[2]

T. P. Clement, Generalized solution to multispecies transport equations coupled with a first-order reaction network, Water Resources Research, 37 (2001), 157-163. doi: 10.1029/2000WR900239.

[3]

T. P. Clement, C. D. Johnson, Y. Sun, G. M. Klecka and C. Bartlett, Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site, Journal of Contaminant Hydrology, 42 (2000), 113-140. doi: 10.1016/S0169-7722(99)00098-4.

[4]

T. P. Clement, Y. Sun, B. S. Hooker and J. N. Petersen, Modeling multispecies reactive transport in ground water, Ground Water Monitoring & Remediation, 18 (1998), 79-92. doi: 10.1111/j.1745-6592.1998.tb00618.x.

[5]

M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270. doi: 10.3934/jimo.2008.4.247.

[6]

L. S. Jennings, K. L. Teo, M. E. Fisher and C. J. Goh, MISER3 version 3, Optimal control software : Theory and user manual, Centre for Applied Dynamics and Optimization, The University of Western Australia, 2004. http://school.maths.uwa.edu.au/les/miser/manual.html.

[7]

K. Kaji and K. H. Wong, Nonlinearly constrained time-delayed optimal control problems, Journal of Optimization Theory and Applications, 82 (1994), 295-313. doi: 10.1007/BF02191855.

[8]

H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6 (1997), 243-262.

[9]

M. S. Lee, K. K. Lee, Y. Hyun, T. P. Clement and D. Hamilton, Nitrogen transformation and transport modeling in groundwater aquifers, Ecological Modelling, 192 (2006), 143-159. doi: 10.1016/j.ecolmodel.2005.07.013.

[10]

B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291. doi: 10.1007/s10957-011-9904-5.

[11]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems, Pacific Journal of Optimization, 7 (2011), 63-81.

[12]

R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica, 44 (2008), 2923-2929. doi: 10.1016/j.automatica.2008.04.011.

[13]

M. Lunn, R. J. Lunn and R. Mackayb, Determining analytic solutions of multiple species contaminant transport, with sorption and decay, Journal of Hydrology, 180 (1996), 195-210. doi: 10.1016/0022-1694(95)02891-9.

[14]

H. Maurer, C. Büshens, J. H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods, 26 (2005), 129-156. doi: 10.1002/oca.756.

[15]

D. E. Rice, R. D. Grose, J. C. Michaelsen, B. P. Dooher, D. H. Macqueen, S. J. Cullen, W. E. Kastenberg, L. G. Everett and M. S. Marino, "California Leaking Underground Fuel Tank (LUFT) Historical Case Analyses," California State Water Resources Publication, UCRL-AR-122206, 1995.

[16]

L. Semprini, P. K. Kitanidis, D. H. Kampbell and J. T. Wilson, Anaerobic transformation of chlorinated aliphatic hydrocarbons in a sand aquifer based on spatial chemical distributions, Water Resources Research, 31 (1995), 1051-1062. doi: 10.1029/94WR02380.

[17]

H. Tao and X. Liu, An improved control parameterization method for chemical dynamic optimization problems, World Congress on Intelligent Control and Automation, WCICA, (2006), 1650-1653.

[18]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics 55, Longman Scientific & Technical, 1991.

[19]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 40 (1999), 314-335. doi: 10.1017/S0334270000010936.

[20]

K. L. Teo, H. W. J. Lee and V. Rehbock, Control parametrization enhancing technique for time optimal control and optimal three-valued control problems, Dynamics of Continuous, Discrete and Impulsive Systems, 4 (1998), 617-631.

[21]

K. L. Teo, K. H. Wong and D. J. Clements, Optimal control computation for linear time-lag systems with linear terminal constraints, Journal of Optimization Theory and Applications, 44 (1984), 509-526. doi: 10.1007/BF00935465.

[22]

L. Y. Wang, W. H. Gui, K. L. Teo, R. C. Loxton and C. H. Yang, Time-delay optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705-718. doi: 10.3934/jimo.2009.5.705.

[23]

K. H. Wong, D. J. Clements and K. L. Teo, Optimal control computation for nonlinear time-lag systems, Journal of Optimization Theory and Applications, 47 (1985), 91-107. doi: 10.1007/BF00941318.

[24]

K. H. Wong, L. S. Jennings and F. Benyah, Control parametrization method for free planning time optimal control problems with time-delayed arguments, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 47 (2001), 5679-5690. doi: 10.1016/S0362-546X(01)00669-1.

[25]

K. H. Wong, H. W. J. Lee and C. K. Chan, Control parametrization and finite element method for controlling multi-species reactive transport in a rectangular diffuser unit, Journal of Optimization Theory and Applications, 150 (2011), 118-141. doi: 10.1007/s10957-011-9826-2.

[1]

Desmond J. Higham, Xuerong Mao, Lukasz Szpruch. Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2083-2100. doi: 10.3934/dcdsb.2013.18.2083

[2]

Ting Kang, Qimin Zhang, Haiyan Wang. Optimal control of an avian influenza model with multiple time delays in state and control variables. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4147-4171. doi: 10.3934/dcdsb.2020278

[3]

M. Alipour, M. A. Vali, A. H. Borzabadi. A hybrid parametrization approach for a class of nonlinear optimal control problems. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 493-506. doi: 10.3934/naco.2019037

[4]

Ye Zhang, Bernd Hofmann. Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems. Inverse Problems and Imaging, 2021, 15 (2) : 229-256. doi: 10.3934/ipi.2020062

[5]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[6]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control and Related Fields, 2021, 11 (3) : 555-578. doi: 10.3934/mcrf.2021012

[7]

Bin Li, Xiaolong Guo, Xiaodong Zeng, Songyi Dian, Minhua Guo. An optimal pid tuning method for a single-link manipulator based on the control parametrization technique. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1813-1823. doi: 10.3934/dcdss.2020107

[8]

Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101

[9]

Erin N. Bodine, Louis J. Gross, Suzanne Lenhart. Optimal control applied to a model for species augmentation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 669-680. doi: 10.3934/mbe.2008.5.669

[10]

Andrzej Just, Zdzislaw Stempień. Optimal control problem for a viscoelastic beam and its galerkin approximation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 263-274. doi: 10.3934/dcdsb.2018018

[11]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control and Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[12]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[13]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[14]

Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4121-4141. doi: 10.3934/dcdsb.2021220

[15]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1067-1094. doi: 10.3934/mbe.2013.10.1067

[16]

Jinlong Guo, Bin Li, Yuandong Ji. A control parametrization based path planning method for the quad-rotor uavs. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1079-1100. doi: 10.3934/jimo.2021009

[17]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial and Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[18]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[19]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[20]

Claude Stolz. On estimation of internal state by an optimal control approach for elastoplastic material. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 599-611. doi: 10.3934/dcdss.2016014

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (1)

[Back to Top]