Citation: |
[1] |
R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and expoential Lévy models, SIAM Journal on Numerical Analysis, 43 (2005), 1596-1626.doi: 10.1137/S0036142903436186. |
[2] |
D. Davydov and V. Linetsky, Structuring, pricing and hedging double-barrier step options, Journal of Computational Finance, 5 (2001), 55-88. |
[3] |
R. Douady, Closed-form formulas for extoic options and their lift time distribution, International Journal of Theoretical and Applied Finance, 2 (1999), 17-42.doi: 10.1142/S0219024999000030. |
[4] |
H. German and M. Yor, Pricing and hedging double barrier options: A probabilistic approach, Mathematical Finance, 6 (1996), 365-378. |
[5] |
C. H. Hui, C. F. Lo and P. H. Yuen, Comment on "Pricing double-barrier options using Laplace Transforms", Finance and Stochastics, 4 (2000), 105-107.doi: 10.1007/s007800050006. |
[6] |
M. Jeannin and M. Pistorius, A transform approach to calculate prices and greeks of barrier options driven by a class of Lévy processes, Quantitative Finance, 10 (2010), 629-644.doi: 10.1080/14697680902896057. |
[7] |
I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus," $2^{nd}$ edition, Springer-Verlag, New York, 1991.doi: 10.1007/978-1-4612-0949-2. |
[8] |
I. Karatzas and S. E. Shreve, "Methods of Mathematical Finance," Springer-Verlag, New York, 1998. |
[9] |
S. G. Kou and H. Wang, Option Pricing under a double exponential jump diffusion model, Management Science, 50 (2004), 1178-1192. |
[10] |
N. Kunitomo and M. Ikeda, Pricing optons with curved boundaries, Mathematical Finance, 2 (1992), 275-198. |
[11] |
V. Linetsky, Step options, Mathematical Finance, 9 (1999), 55-96.doi: 10.1111/1467-9965.00063. |
[12] |
F. Longstaff and E. Schwartz, Valuing American options by simulation: A simple beast-squares approach, The Review of Financal Studies, 14 (2001), 113-147. |
[13] |
R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.doi: 10.2307/3003143. |
[14] |
D. Rich, The mathematical foundations of barrier option pricing theory, Advances in Futures and Options Research, 7 (1994), 267-312. |
[15] |
M. Rubinstein and E. Reiner, Breaking down the barriers, RISK, (1991), 28-35. |
[16] |
M. Schroder, On the valuation of double-barrier options: Computational aspects, Journal of Computaional Finance, 3 (2000), 1-34. |
[17] |
S. E. Shreve, "Stochastic Calculus for Fiance II: Continuous-Time Models," Springer-Verlag, New York, 2004. |
[18] |
J. Sidenius, Double barrier options: Valuation by path counting, Computational Finance, 1 (1998), 63-79. |
[19] |
J. Tsitsiklis and B. Van Roy, Regression methods for pricing complex American style options, IEEE Transactions on Neural Networks, 12 (2001), 694-703.doi: 10.1109/72.935083. |