July  2013, 9(3): 561-577. doi: 10.3934/jimo.2013.9.561

A log-exponential regularization method for a mathematical program with general vertical complementarity constraints

1. 

School of Mathematics, Liaoning Normal University, Dalian, 116029, China

2. 

School of information Science and Engineering, Dalian Polytechnic University, Dalian, 116029, China, China

Received  March 2012 Revised  March 2013 Published  April 2013

Based on the log-exponential function, a regularization method is proposed for solving a mathematical program with general vertical complementarity constraints (MPVCC) considered by Scheel and Scholtes (Math. Oper. Res. 25: 1-22, 2000). With some known smoothing properties of the log-exponential function, a difficult MPVCC is reformulated as a smooth nonlinear programming problem, which becomes solvable by using available nonlinear optimization software. Detailed convergence analysis of this method is investigated and the results obtained generalize conclusions in Yin and Zhang (Math. Meth. Oper. Res. 64: 255-269, 2006). An example of Stackelberg game is illustrated to show the application of this method.
Citation: Jie Zhang, Shuang Lin, Li-Wei Zhang. A log-exponential regularization method for a mathematical program with general vertical complementarity constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 561-577. doi: 10.3934/jimo.2013.9.561
References:
[1]

S. I. Birbil, G. Gürkan and O. Listes, Solving stochastic mathematical programs with complementarity constraints using simulation,, Math. Oper. Res., 31 (2006), 739.  doi: 10.1287/moor.1060.0215.  Google Scholar

[2]

R. W. Cottle and G. B. Dantzig, A generalization of the linear complementarity problem,, J. Combinatorial Theory, 8 (1970), 79.  doi: 10.1016/S0021-9800(70)80010-2.  Google Scholar

[3]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley and Sons, (1983).   Google Scholar

[4]

M. Fukushima and J. S. Pang, Convergence of a smoothing continuation method for mathematical programs with complementarity constraints,, in, (1999), 99.  doi: 10.1007/978-3-642-45780-7_7.  Google Scholar

[5]

A. Fischer, A special Newton-type optimization method,, Optimization, 24 (1992), 269.  doi: 10.1080/02331939208843795.  Google Scholar

[6]

M. S. Gowda and R. Sznajder, A generalization of the Nash equilibrium theorem on bimatrix games,, International Journal of Game Theory, 25 (1996), 1.  doi: 10.1007/BF01254380.  Google Scholar

[7]

Z. Huang and J. Sun, A smoothing Newton algorithm for mathematical programs with complementarity constraints,, Journal of Industrial and Management Optimization, 1 (2005), 153.  doi: 10.3934/jimo.2005.1.153.  Google Scholar

[8]

X. Liu and J. Sun, Generalized stationary points and an interior point method for mathematical programs with equilibrium constraints,, Mathematical Programming, 101 (2004), 231.  doi: 10.1007/s10107-004-0543-6.  Google Scholar

[9]

X. Liu, G. Perakis and J. Sun, A robust SQP method for mathematical programs with linear complementarity constraints,, Computational Optimization and Applications, 34 (2006), 5.  doi: 10.1007/s10589-005-3075-y.  Google Scholar

[10]

Z. Q. Luo, J. S. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints,", Cambridge University Press, (1996).  doi: 10.1017/CBO9780511983658.  Google Scholar

[11]

M. Kočvara and J. V. Outrata, Optimization problems with equilibrium constraints and their numerical solution,, Math. Program., 101 (2004), 119.  doi: 10.1007/s10107-004-0539-2.  Google Scholar

[12]

J. Peng and Z. Lin, A non-interior continuation method for generalized linear complementarity problems,, Mathematical Programming, 86 (1999), 533.  doi: 10.1007/s101070050104.  Google Scholar

[13]

H. Qi and L. Liao, A smoothing Newton method for extended vertical linear complementarity problems,, SIAM Joural of Matrix Analysis and Applications, 21 (1999), 45.  doi: 10.1137/S0895479897329837.  Google Scholar

[14]

R. T. Rockafellar and R. J. B. Wets, "Variational Analysis,", Berlin Heidelberg, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[15]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).   Google Scholar

[16]

H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Stability, optimality, and sensitivity,, Math. Oper. Res., 25 (2000), 1.  doi: 10.1287/moor.25.1.1.15213.  Google Scholar

[17]

H. V. Stackelberg, "The Theory of Market Economy,", Oxford University Press, (1952).   Google Scholar

[18]

H. Yin and J. Zhang, Global convergence of a smooth approximation method for mathematical programs with complementarity constraints,, Math. Meth. Oper. Res., 64 (2006), 255.  doi: 10.1007/s00186-006-0076-2.  Google Scholar

[19]

N. D. Yen, Stability of the solution set of perturbed nonsmooth inequality systems and application,, Journal of Optimization Theory and Applications, 93 (1997), 199.  doi: 10.1023/A:1022662120550.  Google Scholar

[20]

J. Zhang, L. Zhang and S. Lin, A class of smoothing SAA methods for a stochastic mathematical program with complementarity constraints,, J. Math. Anal. Appl., 387 (2012), 201.  doi: 10.1016/j.jmaa.2011.08.073.  Google Scholar

[21]

J. Zhang, L. Zhang and W. Wang, On constraint qualifications in terms of approximate Jacobians for nonsmooth continuous optimization problems,, Nonlinear Analysis, 75 (2012), 2566.  doi: 10.1016/j.na.2011.11.003.  Google Scholar

show all references

References:
[1]

S. I. Birbil, G. Gürkan and O. Listes, Solving stochastic mathematical programs with complementarity constraints using simulation,, Math. Oper. Res., 31 (2006), 739.  doi: 10.1287/moor.1060.0215.  Google Scholar

[2]

R. W. Cottle and G. B. Dantzig, A generalization of the linear complementarity problem,, J. Combinatorial Theory, 8 (1970), 79.  doi: 10.1016/S0021-9800(70)80010-2.  Google Scholar

[3]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley and Sons, (1983).   Google Scholar

[4]

M. Fukushima and J. S. Pang, Convergence of a smoothing continuation method for mathematical programs with complementarity constraints,, in, (1999), 99.  doi: 10.1007/978-3-642-45780-7_7.  Google Scholar

[5]

A. Fischer, A special Newton-type optimization method,, Optimization, 24 (1992), 269.  doi: 10.1080/02331939208843795.  Google Scholar

[6]

M. S. Gowda and R. Sznajder, A generalization of the Nash equilibrium theorem on bimatrix games,, International Journal of Game Theory, 25 (1996), 1.  doi: 10.1007/BF01254380.  Google Scholar

[7]

Z. Huang and J. Sun, A smoothing Newton algorithm for mathematical programs with complementarity constraints,, Journal of Industrial and Management Optimization, 1 (2005), 153.  doi: 10.3934/jimo.2005.1.153.  Google Scholar

[8]

X. Liu and J. Sun, Generalized stationary points and an interior point method for mathematical programs with equilibrium constraints,, Mathematical Programming, 101 (2004), 231.  doi: 10.1007/s10107-004-0543-6.  Google Scholar

[9]

X. Liu, G. Perakis and J. Sun, A robust SQP method for mathematical programs with linear complementarity constraints,, Computational Optimization and Applications, 34 (2006), 5.  doi: 10.1007/s10589-005-3075-y.  Google Scholar

[10]

Z. Q. Luo, J. S. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints,", Cambridge University Press, (1996).  doi: 10.1017/CBO9780511983658.  Google Scholar

[11]

M. Kočvara and J. V. Outrata, Optimization problems with equilibrium constraints and their numerical solution,, Math. Program., 101 (2004), 119.  doi: 10.1007/s10107-004-0539-2.  Google Scholar

[12]

J. Peng and Z. Lin, A non-interior continuation method for generalized linear complementarity problems,, Mathematical Programming, 86 (1999), 533.  doi: 10.1007/s101070050104.  Google Scholar

[13]

H. Qi and L. Liao, A smoothing Newton method for extended vertical linear complementarity problems,, SIAM Joural of Matrix Analysis and Applications, 21 (1999), 45.  doi: 10.1137/S0895479897329837.  Google Scholar

[14]

R. T. Rockafellar and R. J. B. Wets, "Variational Analysis,", Berlin Heidelberg, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[15]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).   Google Scholar

[16]

H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Stability, optimality, and sensitivity,, Math. Oper. Res., 25 (2000), 1.  doi: 10.1287/moor.25.1.1.15213.  Google Scholar

[17]

H. V. Stackelberg, "The Theory of Market Economy,", Oxford University Press, (1952).   Google Scholar

[18]

H. Yin and J. Zhang, Global convergence of a smooth approximation method for mathematical programs with complementarity constraints,, Math. Meth. Oper. Res., 64 (2006), 255.  doi: 10.1007/s00186-006-0076-2.  Google Scholar

[19]

N. D. Yen, Stability of the solution set of perturbed nonsmooth inequality systems and application,, Journal of Optimization Theory and Applications, 93 (1997), 199.  doi: 10.1023/A:1022662120550.  Google Scholar

[20]

J. Zhang, L. Zhang and S. Lin, A class of smoothing SAA methods for a stochastic mathematical program with complementarity constraints,, J. Math. Anal. Appl., 387 (2012), 201.  doi: 10.1016/j.jmaa.2011.08.073.  Google Scholar

[21]

J. Zhang, L. Zhang and W. Wang, On constraint qualifications in terms of approximate Jacobians for nonsmooth continuous optimization problems,, Nonlinear Analysis, 75 (2012), 2566.  doi: 10.1016/j.na.2011.11.003.  Google Scholar

[1]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[2]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

[3]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[4]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[5]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[6]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[7]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[8]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[9]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[10]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[11]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[12]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]