-
Previous Article
Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization
- JIMO Home
- This Issue
-
Next Article
A log-exponential regularization method for a mathematical program with general vertical complementarity constraints
On the robust control design for a class of nonlinearly affine control systems: The attractive ellipsoid approach
1. | Department of Control and Automation, CINVESTAV, Av, Instituto Politecnico Nacional 2508, Mexico D.F., Mexico, Mexico, Mexico |
References:
[1] |
V. Azhmyakov, Stability of differential inclusions: A computational approach, Mathematical Problems in Engineering, 2006 (2006), 1-15.
doi: 10.1155/MPE/2006/17837. |
[2] |
V. Azhmyakov, V. G. Boltyanski and A. Poznyak, Optimal control of impulsive hybrid systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 1089-1097.
doi: 10.1016/j.nahs.2008.09.003. |
[3] |
V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique, Journal of Industrial and Management Optimization, 4 (2008), 697-712.
doi: 10.3934/jimo.2008.4.697. |
[4] |
V. Azhmyakov, A gradient-type algorithm for a class of optimal control processes governed by hybrid dynamical systems, IMA Journal of Mathematical Control and Information, 28 (2011), 291-307.
doi: 10.1093/imamci/dnr010. |
[5] |
V. Azhmyakov, On the geometric aspects of the invariant ellipsoid method: Application to the robust control design, in "Proceedings of the 50th Conference on Decision and Control and European Control Conference," Orlando, USA, (2011), 1353-1358.
doi: 10.1109/CDC.2011.6161180. |
[6] |
V. Azhmyakov, M. V. Basin and J. Raisch, Proximal point based approach to optimal control of affine switched systems, Discrete Event Dynamic Systems, 22 (2012), 61-81.
doi: 10.1007/s10626-011-0109-8. |
[7] |
A. E. Barabanov and O. N. Granichin, Optimal controller for linear plants with bounded noise, Automation and Remote Control, 45 (1984), 39-46. |
[8] |
M. Basin and D. Calderon-Alvarez, Optimal filtering over linear observations with unknown parameters, Journal of The Franklin Institute, 347 (2010), 988-1000.
doi: 10.1016/j.jfranklin.2010.01.006. |
[9] |
M. Basin, J. Rodriguez-Gonzalez and L. Fridman, Optimal and robust control for linear state-delay systems, Journal of The Franklin Institute, 344 (2007), 830-845.
doi: 10.1016/j.jfranklin.2006.10.002. |
[10] |
F. Blanchini and S. Miani, "Set-Theoretic Methods in Control," Birkhäuser, Boston, 2008. |
[11] |
S. Boyd, E. Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities in System and Control Theory," SIAM, Philadelphia, 1994.
doi: 10.1137/1.9781611970777. |
[12] |
P. Chen, H. Qin and J. Huang, Local stabilization of a class of nonlinear systems by dynamic output feedback, Automatica, 37 (2001), 969-981.
doi: 10.1016/S0005-1098(01)00047-4. |
[13] |
D. F. Coutinho, A. Trofino and K. A. Barbosa, Robust linear dynamic output feedback controllers for a class of nonlinear systems, in "Proceedings of the 42 IEEE Conference on Decision and Control," Maui, USA, (2003), 374-379. |
[14] |
M. A. Dahleh, J. B. Pearson and J. Boyd, Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization, IEEE Transactions on Automatic Control, 33 (1988), 722-731.
doi: 10.1109/9.1288. |
[15] |
G. J. Duncan and F. C. Schweppe, Control of linear dynamic systems with set constrained disturbances, IEEE Transactions on Automatic Control, AC-16 (1971), 411-423. |
[16] |
E. Fridman and Y. Orlov, On stability of linear parabolic distributed parameter systems with time-varying delays, in "Proceedings of the 46th Conference on Decision and Control," New Orlean, USA, (2007), 1597-1602.
doi: 10.1109/CDC.2007.4434196. |
[17] |
E. Fridman, A refined input delay approach to sampled-data control, Automatica, 46 (2010), 421-427.
doi: 10.1016/j.automatica.2009.11.017. |
[18] |
L. El Ghaoui and S. Niculescu, "Advances in Linear Matrix Inequalities in Control," SIAM, Philadelphia, 2000.
doi: 10.1137/1.9780898719833. |
[19] |
W. Haddad and V. Chellaboina, "Nonlinear Dynamical Systems and Control," Princeton University Press, Princeton, 2008. |
[20] |
A. Isidori, A. R. Teel and L. Praly, A note on the problem of semiglobal practical stabilization of uncertain nonlinear systems via dynamic output feedback, System and Control Letters, 39 (2000), 165-171.
doi: 10.1016/S0167-6911(99)00083-3. |
[21] |
I. Karafyllis and Z.-P. Jiang, "Stability and Stabilization of Nonlinear Systems," Springer, London, 2011.
doi: 10.1007/978-0-85729-513-2. |
[22] |
C. T. Kelley, L. Qi, X. Tong and H. Yin, Finding a stable solution of a system of nonlinear equations arising from dynamic systems, Journal of Industrial and Management Optimization, 7 (2011), 497-521.
doi: 10.3934/jimo.2011.7.497. |
[23] |
H. K. Khalil, "Nonlinear Systems," Prentice Hall, Upper Saddle River, 2002.
doi: 10.1007/s11071-008-9349-z. |
[24] |
A. B. Kurzhanski and P. Varaiya, Ellipsoidal techniques for reachability under state constraints, SIAM Journal on Control and Optimization, 45 (2006), 1369-1394.
doi: 10.1137/S0363012903437605. |
[25] |
A. B. Kurzhanski and V. M. Veliov, "Modeling Techniques and Uncertain Systems," Birkhäuser, New York, 1994. |
[26] |
W. Lin and C. Qian, Semi-global robust stabilization of MIMO nonlinear systems by partial state and dynamic output feedback, Automatica, 37 (2001), 1093-1101.
doi: 10.1016/S0005-1098(01)00056-5. |
[27] |
M. Mera, A. Poznyak and V. Azhmyakov, On the robust control design for a class of continuous-time dynamical systems with a sample-data output, in "Proceedings of the 18th IFAC World Congress," Milano, Ialy, (2011), 5819-5824. |
[28] |
A. N. Michel, L. Hou and D. Liu, "Stability of Dynamical Systems," Birkhäuser, New York, 2007. |
[29] |
P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems and Control Letters, 57 (2008), 378-385.
doi: 10.1016/j.sysconle.2007.10.009. |
[30] |
E. Polak, "Optimization," Springer, New York, 1997.
doi: 10.1007/978-1-4612-0663-7. |
[31] |
B. T. Polyak, S. A. Nazin, C. Durieu and E. Walter, Ellipsoidal parameter or state estimation under model uncertainty, Automatica, 40 (2004), 1171-1179.
doi: 10.1016/j.automatica.2004.02.014. |
[32] |
B. T. Polyak and M. V. Topunov, Suppression of bounded exogeneous disturbances: Output control, Automation and Remote Control, 69 (2008), 801-818.
doi: 10.1134/S000511790805007X. |
[33] |
A. Polyakov and A. Poznyak, Lyapunov function design for finite-time convergence analysis: Twisting controller for second-order sliding mode realization, Automatica, 45 (2009), 444-448.
doi: 10.1016/j.automatica.2008.07.013. |
[34] |
A. Poznyak, "Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques," Elsevier, Amsterdam, 2008. |
[35] |
A. Poznyak, V. Azhmyakov and M. Mera, Practical output feedback stabilisation for a class of continuous-time dynamic systems under sample-data outputs, International Journal of Control, 84 (2011), 1408-1416.
doi: 10.1080/00207179.2011.603097. |
[36] |
E. Sontag, "Mathematical Control Theory," Springer, New York, 1998. |
[37] |
E. D. Sontag, Further facts about input to state stabilization, IEEE Transactions on Automatic Control, AC-35 (1990), 473-476.
doi: 10.1109/9.52307. |
[38] |
A. R. Teel, D. Nesic and P. V. Kokotovic, A note on input-to-state stability of sampled-data nonlinear systems, in "Proceedings of the 37th IEEE Conference on Decision and Control," Tampa, USA, (1998), 2473-2478.
doi: 10.1109/CDC.1998.757793. |
[39] |
A. R. Teel, L. Moreau and D. Nesic, A note on the robustness of input-to-state stability, in "Proceedings of the 40th IEEE Conference on Decision and Control," Orlando, USA, (2001), 875-880. |
[40] |
E. D. Yakubovich, Solution of the optimal control problem for the linear discrete systems, Automation and Remote Control, 36 (1976), 1447-1453. |
[41] |
V. I. Zubov, "Mathematical Methods for the Study of Automatic Control Systems," Pergamon Press, New York, 1962. |
show all references
References:
[1] |
V. Azhmyakov, Stability of differential inclusions: A computational approach, Mathematical Problems in Engineering, 2006 (2006), 1-15.
doi: 10.1155/MPE/2006/17837. |
[2] |
V. Azhmyakov, V. G. Boltyanski and A. Poznyak, Optimal control of impulsive hybrid systems, Nonlinear Analysis: Hybrid Systems, 2 (2008), 1089-1097.
doi: 10.1016/j.nahs.2008.09.003. |
[3] |
V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique, Journal of Industrial and Management Optimization, 4 (2008), 697-712.
doi: 10.3934/jimo.2008.4.697. |
[4] |
V. Azhmyakov, A gradient-type algorithm for a class of optimal control processes governed by hybrid dynamical systems, IMA Journal of Mathematical Control and Information, 28 (2011), 291-307.
doi: 10.1093/imamci/dnr010. |
[5] |
V. Azhmyakov, On the geometric aspects of the invariant ellipsoid method: Application to the robust control design, in "Proceedings of the 50th Conference on Decision and Control and European Control Conference," Orlando, USA, (2011), 1353-1358.
doi: 10.1109/CDC.2011.6161180. |
[6] |
V. Azhmyakov, M. V. Basin and J. Raisch, Proximal point based approach to optimal control of affine switched systems, Discrete Event Dynamic Systems, 22 (2012), 61-81.
doi: 10.1007/s10626-011-0109-8. |
[7] |
A. E. Barabanov and O. N. Granichin, Optimal controller for linear plants with bounded noise, Automation and Remote Control, 45 (1984), 39-46. |
[8] |
M. Basin and D. Calderon-Alvarez, Optimal filtering over linear observations with unknown parameters, Journal of The Franklin Institute, 347 (2010), 988-1000.
doi: 10.1016/j.jfranklin.2010.01.006. |
[9] |
M. Basin, J. Rodriguez-Gonzalez and L. Fridman, Optimal and robust control for linear state-delay systems, Journal of The Franklin Institute, 344 (2007), 830-845.
doi: 10.1016/j.jfranklin.2006.10.002. |
[10] |
F. Blanchini and S. Miani, "Set-Theoretic Methods in Control," Birkhäuser, Boston, 2008. |
[11] |
S. Boyd, E. Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities in System and Control Theory," SIAM, Philadelphia, 1994.
doi: 10.1137/1.9781611970777. |
[12] |
P. Chen, H. Qin and J. Huang, Local stabilization of a class of nonlinear systems by dynamic output feedback, Automatica, 37 (2001), 969-981.
doi: 10.1016/S0005-1098(01)00047-4. |
[13] |
D. F. Coutinho, A. Trofino and K. A. Barbosa, Robust linear dynamic output feedback controllers for a class of nonlinear systems, in "Proceedings of the 42 IEEE Conference on Decision and Control," Maui, USA, (2003), 374-379. |
[14] |
M. A. Dahleh, J. B. Pearson and J. Boyd, Optimal rejection of persistent disturbances, robust stability, and mixed sensitivity minimization, IEEE Transactions on Automatic Control, 33 (1988), 722-731.
doi: 10.1109/9.1288. |
[15] |
G. J. Duncan and F. C. Schweppe, Control of linear dynamic systems with set constrained disturbances, IEEE Transactions on Automatic Control, AC-16 (1971), 411-423. |
[16] |
E. Fridman and Y. Orlov, On stability of linear parabolic distributed parameter systems with time-varying delays, in "Proceedings of the 46th Conference on Decision and Control," New Orlean, USA, (2007), 1597-1602.
doi: 10.1109/CDC.2007.4434196. |
[17] |
E. Fridman, A refined input delay approach to sampled-data control, Automatica, 46 (2010), 421-427.
doi: 10.1016/j.automatica.2009.11.017. |
[18] |
L. El Ghaoui and S. Niculescu, "Advances in Linear Matrix Inequalities in Control," SIAM, Philadelphia, 2000.
doi: 10.1137/1.9780898719833. |
[19] |
W. Haddad and V. Chellaboina, "Nonlinear Dynamical Systems and Control," Princeton University Press, Princeton, 2008. |
[20] |
A. Isidori, A. R. Teel and L. Praly, A note on the problem of semiglobal practical stabilization of uncertain nonlinear systems via dynamic output feedback, System and Control Letters, 39 (2000), 165-171.
doi: 10.1016/S0167-6911(99)00083-3. |
[21] |
I. Karafyllis and Z.-P. Jiang, "Stability and Stabilization of Nonlinear Systems," Springer, London, 2011.
doi: 10.1007/978-0-85729-513-2. |
[22] |
C. T. Kelley, L. Qi, X. Tong and H. Yin, Finding a stable solution of a system of nonlinear equations arising from dynamic systems, Journal of Industrial and Management Optimization, 7 (2011), 497-521.
doi: 10.3934/jimo.2011.7.497. |
[23] |
H. K. Khalil, "Nonlinear Systems," Prentice Hall, Upper Saddle River, 2002.
doi: 10.1007/s11071-008-9349-z. |
[24] |
A. B. Kurzhanski and P. Varaiya, Ellipsoidal techniques for reachability under state constraints, SIAM Journal on Control and Optimization, 45 (2006), 1369-1394.
doi: 10.1137/S0363012903437605. |
[25] |
A. B. Kurzhanski and V. M. Veliov, "Modeling Techniques and Uncertain Systems," Birkhäuser, New York, 1994. |
[26] |
W. Lin and C. Qian, Semi-global robust stabilization of MIMO nonlinear systems by partial state and dynamic output feedback, Automatica, 37 (2001), 1093-1101.
doi: 10.1016/S0005-1098(01)00056-5. |
[27] |
M. Mera, A. Poznyak and V. Azhmyakov, On the robust control design for a class of continuous-time dynamical systems with a sample-data output, in "Proceedings of the 18th IFAC World Congress," Milano, Ialy, (2011), 5819-5824. |
[28] |
A. N. Michel, L. Hou and D. Liu, "Stability of Dynamical Systems," Birkhäuser, New York, 2007. |
[29] |
P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems and Control Letters, 57 (2008), 378-385.
doi: 10.1016/j.sysconle.2007.10.009. |
[30] |
E. Polak, "Optimization," Springer, New York, 1997.
doi: 10.1007/978-1-4612-0663-7. |
[31] |
B. T. Polyak, S. A. Nazin, C. Durieu and E. Walter, Ellipsoidal parameter or state estimation under model uncertainty, Automatica, 40 (2004), 1171-1179.
doi: 10.1016/j.automatica.2004.02.014. |
[32] |
B. T. Polyak and M. V. Topunov, Suppression of bounded exogeneous disturbances: Output control, Automation and Remote Control, 69 (2008), 801-818.
doi: 10.1134/S000511790805007X. |
[33] |
A. Polyakov and A. Poznyak, Lyapunov function design for finite-time convergence analysis: Twisting controller for second-order sliding mode realization, Automatica, 45 (2009), 444-448.
doi: 10.1016/j.automatica.2008.07.013. |
[34] |
A. Poznyak, "Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques," Elsevier, Amsterdam, 2008. |
[35] |
A. Poznyak, V. Azhmyakov and M. Mera, Practical output feedback stabilisation for a class of continuous-time dynamic systems under sample-data outputs, International Journal of Control, 84 (2011), 1408-1416.
doi: 10.1080/00207179.2011.603097. |
[36] |
E. Sontag, "Mathematical Control Theory," Springer, New York, 1998. |
[37] |
E. D. Sontag, Further facts about input to state stabilization, IEEE Transactions on Automatic Control, AC-35 (1990), 473-476.
doi: 10.1109/9.52307. |
[38] |
A. R. Teel, D. Nesic and P. V. Kokotovic, A note on input-to-state stability of sampled-data nonlinear systems, in "Proceedings of the 37th IEEE Conference on Decision and Control," Tampa, USA, (1998), 2473-2478.
doi: 10.1109/CDC.1998.757793. |
[39] |
A. R. Teel, L. Moreau and D. Nesic, A note on the robustness of input-to-state stability, in "Proceedings of the 40th IEEE Conference on Decision and Control," Orlando, USA, (2001), 875-880. |
[40] |
E. D. Yakubovich, Solution of the optimal control problem for the linear discrete systems, Automation and Remote Control, 36 (1976), 1447-1453. |
[41] |
V. I. Zubov, "Mathematical Methods for the Study of Automatic Control Systems," Pergamon Press, New York, 1962. |
[1] |
Hussain Alazki, Alexander Poznyak. Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: The attractive ellipsoid method. Journal of Industrial and Management Optimization, 2016, 12 (1) : 169-186. doi: 10.3934/jimo.2016.12.169 |
[2] |
Chen Li, Fajie Wei, Shenghan Zhou. Prediction method based on optimization theory and its application. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1213-1221. doi: 10.3934/dcdss.2015.8.1213 |
[3] |
Chien-Wen Chao, Shu-Cherng Fang, Ching-Jong Liao. A tropical cyclone-based method for global optimization. Journal of Industrial and Management Optimization, 2012, 8 (1) : 103-115. doi: 10.3934/jimo.2012.8.103 |
[4] |
Chun-Xiang Guo, Guo Qiang, Jin Mao-Zhu, Zhihan Lv. Dynamic systems based on preference graph and distance. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1139-1154. doi: 10.3934/dcdss.2015.8.1139 |
[5] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[6] |
Yuji Harata, Yoshihisa Banno, Kouichi Taji. Parametric excitation based bipedal walking: Control method and optimization. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 171-190. doi: 10.3934/naco.2011.1.171 |
[7] |
Yi Cui, Xintong Fang, Gaoqi Liu, Bin Li. Trajectory optimization of UAV based on Hp-adaptive Radau pseudospectral method. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021201 |
[8] |
Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253 |
[9] |
Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33 |
[10] |
Honglei Xu, Kok Lay Teo. $H_\infty$ optimal stabilization of a class of uncertain impulsive systems: An LMI approach. Journal of Industrial and Management Optimization, 2009, 5 (1) : 153-159. doi: 10.3934/jimo.2009.5.153 |
[11] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial and Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[12] |
Oliver Jenkinson. Optimization and majorization of invariant measures. Electronic Research Announcements, 2007, 13: 1-12. |
[13] |
Vadim Azhmyakov. An approach to controlled mechanical systems based on the multiobjective optimization technique. Journal of Industrial and Management Optimization, 2008, 4 (4) : 697-712. doi: 10.3934/jimo.2008.4.697 |
[14] |
Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial and Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737 |
[15] |
Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015 |
[16] |
Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007 |
[17] |
Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1269-1287. doi: 10.3934/jimo.2020021 |
[18] |
Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059 |
[19] |
Songhai Deng, Zhong Wan, Yanjiu Zhou. Optimization model and solution method for dynamically correlated two-product newsvendor problems based on Copula. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1637-1652. doi: 10.3934/dcdss.2020096 |
[20] |
Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial and Management Optimization, 2012, 8 (2) : 469-484. doi: 10.3934/jimo.2012.8.469 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]