• Previous Article
    Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements
  • JIMO Home
  • This Issue
  • Next Article
    Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization
July  2013, 9(3): 621-630. doi: 10.3934/jimo.2013.9.621

Generalized weak sharp minima of variational inequality problems with functional constraints

1. 

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu, China

2. 

Rear services office, Chongqing Police College, Chongqing, China

3. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331

4. 

School of Economics and Business Administration, Chongqing University, Chongqing, China

Received  April 2012 Revised  March 2013 Published  April 2013

In this paper, the notion of generalized weak sharp minima is introduced for variational inequality problems with functional constraints in finite-dimensional spaces by virtue of a dual gap function. Some equivalent and necessary conditions for the solution set of the variational inequality problems to be a set of generalized weak sharp minima are obtained.
Citation: Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621
References:
[1]

A. Auslender, Asymptotic analysis for penalty and barrier methods in variational inequalities,, SIAM J. Control Optim., 37 (1999), 653.  doi: 10.1137/S0363012996310909.  Google Scholar

[2]

A. Auslender, Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone,, Optim. Methods Softw., 18 (2003), 359.  doi: 10.1080/1055678031000122586.  Google Scholar

[3]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problem,", Springer-Verlag, (2000).   Google Scholar

[4]

J. V. Burke and S. Deng, Weak sharp minima revisited, part I: Basic theory,, Control and Cybernetics, 31 (2002), 439.   Google Scholar

[5]

J. V. Burke and S. Deng, Weak sharp minima revisited, part II: Application to linear regularity and error bounds,, Math. Program., 104 (2005), 235.  doi: 10.1007/s10107-005-0615-2.  Google Scholar

[6]

J. V. Burke and S. Deng, Weak sharp minima revisited, part III: Error bounds for differentiable convex inclusions,, Math. Program., 116 (2009), 37.  doi: 10.1007/s10107-007-0130-8.  Google Scholar

[7]

J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming,, SIAM J. Control and Optim., 31 (1993), 1340.  doi: 10.1137/0331063.  Google Scholar

[8]

J. V. Burke and M. C. Ferris, A Gauss-Newton method for convex composite optimaztion,, Math. Program., 71 (1995), 179.  doi: 10.1007/BF01585997.  Google Scholar

[9]

J. M. Danskin, The theory of min-max with applications,, SIAM J. Appl. Math., 14 (1966), 641.  doi: 10.1137/0114053.  Google Scholar

[10]

S. Deng and X. Q. Yang, Weak sharp minima in multicriteria linear programming,, SIAM J. Optim., 15 (2004), 456.  doi: 10.1137/S1052623403434401.  Google Scholar

[11]

S. Deng, Some remarks on finite termination of descent methods,, Pacific Journal of Optimization, 1 (2005), 19.   Google Scholar

[12]

M. C. Ferris, "Weak Sharp Minima and Penalty Functions in Mathematical Programming,", Ph. D thesis, (1988).   Google Scholar

[13]

M. C. Ferris, Iterative linear programming solution of convex programs,, J. Optim. Therory Appl., 65 (1990), 53.  doi: 10.1007/BF00941159.  Google Scholar

[14]

M. C. Ferris, Finite termination of the proximal point algorithm,, Math. Program., 50 (1991), 359.  doi: 10.1007/BF01594944.  Google Scholar

[15]

R. Henrion and J. Outrata, A subdifferential condition for calmness of multifunctions,, J. Math. Anal. Appl., 258 (2001), 110.  doi: 10.1006/jmaa.2000.7363.  Google Scholar

[16]

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,, Math. Program., 48 (1990), 161.  doi: 10.1007/BF01582255.  Google Scholar

[17]

B. S. He, H. Yang and C. S. Zhang, A modified augmented Lagrangian method for a class of monotone variational inequalities,, Eur. J. Oper. Res., 159 (2004), 35.  doi: 10.1016/S0377-2217(03)00385-0.  Google Scholar

[18]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.  doi: 10.3934/jimo.2007.3.671.  Google Scholar

[19]

A. S. Lewis and J. S. Pang, Error bounds for convex inequality systems,, in, (1996).  doi: 10.1007/978-1-4613-3341-8_3.  Google Scholar

[20]

C. Li and X. Wang, On convergence of the gauss-Netow method of convex composite optimization,, Math. Program., 91 (2002), 349.  doi: 10.1007/s101070100249.  Google Scholar

[21]

Laura J. Kettner and S. Deng, On well-posedness and hausdorff convergence of solution sets of vector optimization problems,, J. Optim. Theory Appl., 153 (2012), 619.  doi: 10.1007/s10957-011-9947-7.  Google Scholar

[22]

M. Studniarski, Weak sharp minima in multiobjective optimiation,, Control and Cybernetics, 36 (2007), 925.   Google Scholar

[23]

M. Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming,, in, 396 (1999), 207.   Google Scholar

[24]

P. Marcotte and D. L. Zhu, Weak sharp solutions of variational inequalities,, SIAM J. Optim., 9 (1998), 179.  doi: 10.1137/S1052623496309867.  Google Scholar

[25]

P. Marcotte and D. L. Zhu, Erratum: Weak sharp solutions of variational inequalities,, SIAM J. Optim., 10 (2000), 942.  doi: 10.1137/S1052623499360616.  Google Scholar

[26]

B. T. Polyak and Sharp Minima, Institue of control sciences lecture notes, Moscow, USSR, 1979;, Presented at the IIASA workshop om generalized lagrangians and their applications, (1979).   Google Scholar

[27]

Z. L. Wu and S. Y. Wu, Weak sharp solutions of variational inequalities in Hilbert spaces,, SIAM J. Optim., 14 (2004), 1011.  doi: 10.1137/S1052623403421486.  Google Scholar

[28]

Z. L. Wu and S. Y. Wu, Gâteaux differentiability of the dual gap function of a variational inequality,, Eur. J. Oper. Res., 190 (2008), 328.  doi: 10.1016/j.ejor.2007.06.024.  Google Scholar

[29]

X. Y. Zheng and X. Q. Yang, Weak sharp minima for semi-infinite optimization problems with applications,, SIAM J. Optim., 18 (2007), 573.  doi: 10.1137/060670213.  Google Scholar

[30]

X. Y. Zheng and X. Q. Yang, Global weak sharp minima for convex (semi-)infinite optimization problems,, J. Math. Anal. Appl., 348 (2008), 1021.  doi: 10.1016/j.jmaa.2008.07.052.  Google Scholar

[31]

X. Y. Zheng and X. Q. Yang, Weak sharp minima for piecewise linear multiobjective optimization in normed spaces,, Nonlinear Anal., 68 (2008), 3771.  doi: 10.1016/j.na.2007.04.018.  Google Scholar

[32]

X. Y. Zheng and K. F. Ng, Strong KKT conditions and weak sharp minima in convex-composite optimization,, Math. Program., (2009).   Google Scholar

[33]

J. Z. Zhang, C. Y. Wang and N. H. Xiu, The dual gap function for variational inequalities,, Appl. Math. Optim., 48 (2003), 129.  doi: 10.1007/s00245-003-0771-9.  Google Scholar

[34]

T. Larsson and M. Patriksson, A class of gap functions for variational inequalities,, Math. Program., 64 (1994), 53.  doi: 10.1007/BF01582565.  Google Scholar

[35]

P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations,, Acta Math., 105 (1966), 271.  doi: 10.1007/BF02392210.  Google Scholar

[36]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley Sons, (1983).   Google Scholar

[37]

R. T. Rockafellar, "Convex Analysis, Princeton University Press,", Princeton, (1970).   Google Scholar

[38]

R. T. Rockafellar, "Conjugate Duality and Optimization,", SIAM, (1974).   Google Scholar

[39]

S. S. Chang, "Variational Inequality and Complementarity Problem Theory with Applications,", Shanghai Sci. and Tech. Literature Publishing House, (1991).   Google Scholar

show all references

References:
[1]

A. Auslender, Asymptotic analysis for penalty and barrier methods in variational inequalities,, SIAM J. Control Optim., 37 (1999), 653.  doi: 10.1137/S0363012996310909.  Google Scholar

[2]

A. Auslender, Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone,, Optim. Methods Softw., 18 (2003), 359.  doi: 10.1080/1055678031000122586.  Google Scholar

[3]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problem,", Springer-Verlag, (2000).   Google Scholar

[4]

J. V. Burke and S. Deng, Weak sharp minima revisited, part I: Basic theory,, Control and Cybernetics, 31 (2002), 439.   Google Scholar

[5]

J. V. Burke and S. Deng, Weak sharp minima revisited, part II: Application to linear regularity and error bounds,, Math. Program., 104 (2005), 235.  doi: 10.1007/s10107-005-0615-2.  Google Scholar

[6]

J. V. Burke and S. Deng, Weak sharp minima revisited, part III: Error bounds for differentiable convex inclusions,, Math. Program., 116 (2009), 37.  doi: 10.1007/s10107-007-0130-8.  Google Scholar

[7]

J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming,, SIAM J. Control and Optim., 31 (1993), 1340.  doi: 10.1137/0331063.  Google Scholar

[8]

J. V. Burke and M. C. Ferris, A Gauss-Newton method for convex composite optimaztion,, Math. Program., 71 (1995), 179.  doi: 10.1007/BF01585997.  Google Scholar

[9]

J. M. Danskin, The theory of min-max with applications,, SIAM J. Appl. Math., 14 (1966), 641.  doi: 10.1137/0114053.  Google Scholar

[10]

S. Deng and X. Q. Yang, Weak sharp minima in multicriteria linear programming,, SIAM J. Optim., 15 (2004), 456.  doi: 10.1137/S1052623403434401.  Google Scholar

[11]

S. Deng, Some remarks on finite termination of descent methods,, Pacific Journal of Optimization, 1 (2005), 19.   Google Scholar

[12]

M. C. Ferris, "Weak Sharp Minima and Penalty Functions in Mathematical Programming,", Ph. D thesis, (1988).   Google Scholar

[13]

M. C. Ferris, Iterative linear programming solution of convex programs,, J. Optim. Therory Appl., 65 (1990), 53.  doi: 10.1007/BF00941159.  Google Scholar

[14]

M. C. Ferris, Finite termination of the proximal point algorithm,, Math. Program., 50 (1991), 359.  doi: 10.1007/BF01594944.  Google Scholar

[15]

R. Henrion and J. Outrata, A subdifferential condition for calmness of multifunctions,, J. Math. Anal. Appl., 258 (2001), 110.  doi: 10.1006/jmaa.2000.7363.  Google Scholar

[16]

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,, Math. Program., 48 (1990), 161.  doi: 10.1007/BF01582255.  Google Scholar

[17]

B. S. He, H. Yang and C. S. Zhang, A modified augmented Lagrangian method for a class of monotone variational inequalities,, Eur. J. Oper. Res., 159 (2004), 35.  doi: 10.1016/S0377-2217(03)00385-0.  Google Scholar

[18]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.  doi: 10.3934/jimo.2007.3.671.  Google Scholar

[19]

A. S. Lewis and J. S. Pang, Error bounds for convex inequality systems,, in, (1996).  doi: 10.1007/978-1-4613-3341-8_3.  Google Scholar

[20]

C. Li and X. Wang, On convergence of the gauss-Netow method of convex composite optimization,, Math. Program., 91 (2002), 349.  doi: 10.1007/s101070100249.  Google Scholar

[21]

Laura J. Kettner and S. Deng, On well-posedness and hausdorff convergence of solution sets of vector optimization problems,, J. Optim. Theory Appl., 153 (2012), 619.  doi: 10.1007/s10957-011-9947-7.  Google Scholar

[22]

M. Studniarski, Weak sharp minima in multiobjective optimiation,, Control and Cybernetics, 36 (2007), 925.   Google Scholar

[23]

M. Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming,, in, 396 (1999), 207.   Google Scholar

[24]

P. Marcotte and D. L. Zhu, Weak sharp solutions of variational inequalities,, SIAM J. Optim., 9 (1998), 179.  doi: 10.1137/S1052623496309867.  Google Scholar

[25]

P. Marcotte and D. L. Zhu, Erratum: Weak sharp solutions of variational inequalities,, SIAM J. Optim., 10 (2000), 942.  doi: 10.1137/S1052623499360616.  Google Scholar

[26]

B. T. Polyak and Sharp Minima, Institue of control sciences lecture notes, Moscow, USSR, 1979;, Presented at the IIASA workshop om generalized lagrangians and their applications, (1979).   Google Scholar

[27]

Z. L. Wu and S. Y. Wu, Weak sharp solutions of variational inequalities in Hilbert spaces,, SIAM J. Optim., 14 (2004), 1011.  doi: 10.1137/S1052623403421486.  Google Scholar

[28]

Z. L. Wu and S. Y. Wu, Gâteaux differentiability of the dual gap function of a variational inequality,, Eur. J. Oper. Res., 190 (2008), 328.  doi: 10.1016/j.ejor.2007.06.024.  Google Scholar

[29]

X. Y. Zheng and X. Q. Yang, Weak sharp minima for semi-infinite optimization problems with applications,, SIAM J. Optim., 18 (2007), 573.  doi: 10.1137/060670213.  Google Scholar

[30]

X. Y. Zheng and X. Q. Yang, Global weak sharp minima for convex (semi-)infinite optimization problems,, J. Math. Anal. Appl., 348 (2008), 1021.  doi: 10.1016/j.jmaa.2008.07.052.  Google Scholar

[31]

X. Y. Zheng and X. Q. Yang, Weak sharp minima for piecewise linear multiobjective optimization in normed spaces,, Nonlinear Anal., 68 (2008), 3771.  doi: 10.1016/j.na.2007.04.018.  Google Scholar

[32]

X. Y. Zheng and K. F. Ng, Strong KKT conditions and weak sharp minima in convex-composite optimization,, Math. Program., (2009).   Google Scholar

[33]

J. Z. Zhang, C. Y. Wang and N. H. Xiu, The dual gap function for variational inequalities,, Appl. Math. Optim., 48 (2003), 129.  doi: 10.1007/s00245-003-0771-9.  Google Scholar

[34]

T. Larsson and M. Patriksson, A class of gap functions for variational inequalities,, Math. Program., 64 (1994), 53.  doi: 10.1007/BF01582565.  Google Scholar

[35]

P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations,, Acta Math., 105 (1966), 271.  doi: 10.1007/BF02392210.  Google Scholar

[36]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley Sons, (1983).   Google Scholar

[37]

R. T. Rockafellar, "Convex Analysis, Princeton University Press,", Princeton, (1970).   Google Scholar

[38]

R. T. Rockafellar, "Conjugate Duality and Optimization,", SIAM, (1974).   Google Scholar

[39]

S. S. Chang, "Variational Inequality and Complementarity Problem Theory with Applications,", Shanghai Sci. and Tech. Literature Publishing House, (1991).   Google Scholar

[1]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[2]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[3]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[4]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[5]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[6]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[7]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[8]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[9]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[10]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[11]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[12]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[13]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[14]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[15]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[16]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[17]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[18]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[19]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[20]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]