July  2013, 9(3): 631-642. doi: 10.3934/jimo.2013.9.631

Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements

1. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China

2. 

School of Mathematical Sciences, South China Normal University, Guangzhou 510631

Received  April 2012 Revised  March 2013 Published  April 2013

In this paper, we investigate the superconvergence property of a quadratic elliptic control problem with pointwise control constraints. The state and the co-state variables are approximated by the Raviart-Thomas mixed finite element of order $k=1$ and the control variable is discretized by piecewise linear but discontinuous functions. Approximations of the optimal solution of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order $h^{2}$.
Citation: Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631
References:
[1]

N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem,, Comput. Optim. Appl., 23 (2002), 201.  doi: 10.1023/A:1020576801966.  Google Scholar

[2]

R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept,, SIAM J. Control Optim., 39 (2000), 113.  doi: 10.1137/S0363012999351097.  Google Scholar

[3]

F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods,", Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[4]

E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems,, in, (2003), 89.   Google Scholar

[5]

Y. Chen, Superconvergence of mixed finite element methods for optimal control problems,, Math. Comp., 77 (2008), 1269.  doi: 10.1090/S0025-5718-08-02104-2.  Google Scholar

[6]

Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements,, Inter. J. Numer. Meths. Eng., 75 (2008), 881.  doi: 10.1002/nme.2272.  Google Scholar

[7]

Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems,, J. Sci. Comput., 42 (2009), 382.  doi: 10.1007/s10915-009-9327-8.  Google Scholar

[8]

Y. Chen and Y. Q. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations,, J. Sci. Comput., 39 (2009), 206.  doi: 10.1007/s10915-008-9258-9.  Google Scholar

[9]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", North-Holland, (1978).   Google Scholar

[10]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,", Pitman, (1985).   Google Scholar

[11]

J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations,, Math. Comp., 44 (1985), 39.  doi: 10.2307/2007791.  Google Scholar

[12]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,, J. Math. Anal. Appl., 44 (1973), 28.   Google Scholar

[13]

T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation,, RAIRO. Anal. Numer., 13 (1979), 313.   Google Scholar

[14]

R. Li, W. B. Liu, H. P. Ma and T. Tang, Adaptive finite element approximation of elliptic optimal control,, SIAM J. Control Optim., 41 (2002), 1321.  doi: 10.1137/S0363012901389342.  Google Scholar

[15]

R. Li and W., Liu,, , ().   Google Scholar

[16]

J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Springer-Verlag, (1971).   Google Scholar

[17]

W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal control problems,, Adv. Comp. Math., 15 (2001), 285.  doi: 10.1023/A:1014239012739.  Google Scholar

[18]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems,, SIAM J. Control Optim., 43 (2004), 970.  doi: 10.1137/S0363012903431608.  Google Scholar

[19]

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems,, in, (1977), 292.   Google Scholar

[20]

A. Rösch and R. Simon, Linear and discontinuous approximations for optimal control problems,, Numer. Funct. Anal. Optim., 26 (2005), 427.  doi: 10.1081/NFA-200067309.  Google Scholar

show all references

References:
[1]

N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem,, Comput. Optim. Appl., 23 (2002), 201.  doi: 10.1023/A:1020576801966.  Google Scholar

[2]

R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept,, SIAM J. Control Optim., 39 (2000), 113.  doi: 10.1137/S0363012999351097.  Google Scholar

[3]

F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods,", Springer-Verlag, (1991).  doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[4]

E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems,, in, (2003), 89.   Google Scholar

[5]

Y. Chen, Superconvergence of mixed finite element methods for optimal control problems,, Math. Comp., 77 (2008), 1269.  doi: 10.1090/S0025-5718-08-02104-2.  Google Scholar

[6]

Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements,, Inter. J. Numer. Meths. Eng., 75 (2008), 881.  doi: 10.1002/nme.2272.  Google Scholar

[7]

Y. Chen, Y. Huang, W. B. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems,, J. Sci. Comput., 42 (2009), 382.  doi: 10.1007/s10915-009-9327-8.  Google Scholar

[8]

Y. Chen and Y. Q. Dai, Superconvergence for optimal control problems governed by semi-linear elliptic equations,, J. Sci. Comput., 39 (2009), 206.  doi: 10.1007/s10915-008-9258-9.  Google Scholar

[9]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems,", North-Holland, (1978).   Google Scholar

[10]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,", Pitman, (1985).   Google Scholar

[11]

J. Douglas and J. E. Roberts, Global estimates for mixed finite element methods for second order elliptic equations,, Math. Comp., 44 (1985), 39.  doi: 10.2307/2007791.  Google Scholar

[12]

F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,, J. Math. Anal. Appl., 44 (1973), 28.   Google Scholar

[13]

T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation,, RAIRO. Anal. Numer., 13 (1979), 313.   Google Scholar

[14]

R. Li, W. B. Liu, H. P. Ma and T. Tang, Adaptive finite element approximation of elliptic optimal control,, SIAM J. Control Optim., 41 (2002), 1321.  doi: 10.1137/S0363012901389342.  Google Scholar

[15]

R. Li and W., Liu,, , ().   Google Scholar

[16]

J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Springer-Verlag, (1971).   Google Scholar

[17]

W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal control problems,, Adv. Comp. Math., 15 (2001), 285.  doi: 10.1023/A:1014239012739.  Google Scholar

[18]

C. Meyer and A. Rösch, Superconvergence properties of optimal control problems,, SIAM J. Control Optim., 43 (2004), 970.  doi: 10.1137/S0363012903431608.  Google Scholar

[19]

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems,, in, (1977), 292.   Google Scholar

[20]

A. Rösch and R. Simon, Linear and discontinuous approximations for optimal control problems,, Numer. Funct. Anal. Optim., 26 (2005), 427.  doi: 10.1081/NFA-200067309.  Google Scholar

[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[4]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[5]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[6]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[7]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[8]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[9]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[10]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[11]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[12]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[13]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[14]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[15]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[16]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[17]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[18]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[19]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[20]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]