• Previous Article
    Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces
  • JIMO Home
  • This Issue
  • Next Article
    Multi-period mean-variance portfolio selection with fixed and proportional transaction costs
July  2013, 9(3): 659-669. doi: 10.3934/jimo.2013.9.659

Optimality conditions for vector equilibrium problems and their applications

1. 

Technical University of Cluj-Napoca, Department of Mathematics, Str. G. Bariţiu 25, 400027, Cluj-Napoca, Romania

Received  December 2011 Revised  March 2013 Published  April 2013

The purpose of this paper is to establish necessary and sufficient conditions for a point to be solution of a vector equilibrium problem with cone and affine constraints. Using a separation theorem, which involves the quasi-interior of a convex set, we obtain optimality conditions for solutions of the vector equilibrium problem. Then, the main result is applied to vector optimization problems with cone and affine constraints and to duality theory.
Citation: Adela Capătă. Optimality conditions for vector equilibrium problems and their applications. Journal of Industrial & Management Optimization, 2013, 9 (3) : 659-669. doi: 10.3934/jimo.2013.9.659
References:
[1]

L. Q. Anh, P. Q. Khanh, D. T. M. Van and J. C. Yao, Well-posedness for vector quasiequilibria,, Taiwanese J. Math., 13 (2009), 713.   Google Scholar

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, On generalized vector equilibrium problems,, Nonlinear Anal., 47 (2001), 543.  doi: 10.1016/S0362-546X(01)00199-7.  Google Scholar

[3]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481.  doi: 10.1023/A:1017581009670.  Google Scholar

[4]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations of solutions for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.  doi: 10.1023/A:1015366419163.  Google Scholar

[5]

Q. H. Ansari, W. Oettli and D. Schläger, A generalization of vectorial equilibria,, Math. Meth. Oper. Res., 46 (1997), 147.  doi: 10.1007/BF01217687.  Google Scholar

[6]

Q. H. Ansari, X. Q. Yang and J. C. Yao, Existence and duality of implicit vector variational problems,, Numer. Funct. Anal. Optim., 22 (2001), 815.  doi: 10.1081/NFA-100108310.  Google Scholar

[7]

M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions,, J. Optim. Theory Appl., 92 (1997), 527.  doi: 10.1023/A:1022603406244.  Google Scholar

[8]

M. Bianchi, G. Kassay and R. Pini, Ekeland's principle for vector equilibrium problems,, Nonlinear Anal., 66 (2007), 1454.  doi: 10.1016/j.na.2006.02.003.  Google Scholar

[9]

M. Bianchi, G. Kassay and R. Pini, Well-posedness for vector equilibrium problems,, Math. Meth. Oper. Res., 70 (2009), 171.  doi: 10.1007/s00186-008-0239-4.  Google Scholar

[10]

G. Bigi, A. Capătă and G. Kassay, Existence results for strong vector equilibrium problems and their applications,, Optimization, 61 (2012), 567.  doi: 10.1080/02331934.2010.528761.  Google Scholar

[11]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.   Google Scholar

[12]

J. M. Borwein and R. Goebel, Notions of relative interior in Banach spaces,, J. Math. Sci., 115 (2003), 2542.  doi: 10.1023/A:1022988116044.  Google Scholar

[13]

J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory,, Math. Prog., 57 (1992), 15.  doi: 10.1007/BF01581072.  Google Scholar

[14]

J. M. Borwein and V. Jeyakumar, On convexlike Lagrangian and minimax theorems,, Research Report 24, (1988).   Google Scholar

[15]

F. Cammaroto and B. Di Bella, Separation theorem based on the quasirelative interior and application to duality theory,, J. Optim. Theory Appl., 125 (2005), 223.  doi: 10.1007/s10957-004-1724-4.  Google Scholar

[16]

A. Capătă and G. Kassay, On vector equilibrium problems and applications,, Taiwanese J. Math., 15 (2011), 365.   Google Scholar

[17]

A. Capătă, Optimality conditions for extended Ky Fan inequality with cone and affine constraints and their applications,, J. Optim. Theory. Appl., 152 (2012), 661.  doi: 10.1007/s10957-011-9916-1.  Google Scholar

[18]

P. Daniele, S. Giuffrè and A. Maugeri, Infinite dimensional duality and applications,, Math. Ann., 339 (2007), 221.  doi: 10.1007/s00208-007-0118-y.  Google Scholar

[19]

K. Fan, Minimax theorems,, Proc. National Acad. Sci. USA, 39 (1953), 42.  doi: 10.1073/pnas.39.1.42.  Google Scholar

[20]

K. Fan, A minimax inequality and applications,, in, (1972), 103.   Google Scholar

[21]

F. Giannessi, "Vector Variational Inequalities and Vector Equilibria,", Kluwer Academic Publishers, (2000).  doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[22]

X. H. Gong, Optimality conditions for vector equilibrium problems,, J. Math. Anal. Appl., 342 (2008), 1455.  doi: 10.1016/j.jmaa.2008.01.026.  Google Scholar

[23]

R. B. Holmes, "Geometric Functional Analysis and its Applications,", Springer-Verlag, (1975).   Google Scholar

[24]

K. Kimura and J. C. Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 649.   Google Scholar

[25]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric generalized quasi vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 2233.   Google Scholar

[26]

M. A. Limber and R. K. Goodrich, Quasi interiors, Lagrange multipliers and $L^p$ spectral estimation with lattice bounds,, J. Optim. Theory Appl., 78 (1993), 143.  doi: 10.1007/BF00940705.  Google Scholar

[27]

B. C. Ma and X. H. Gong, Optimality conditions for vector equilibrium problems in normed spaces,, Optimization, 60 (2011), 1441.  doi: 10.1080/02331931003657709.  Google Scholar

[28]

Q. Qiu, Optimality conditions of globally efficient solutions for vector equilibrium problems with generalized convexity,, J. Ineq. Appl., (2009).  doi: 10.1155/2009/898213.  Google Scholar

[29]

Q. S. Qiu, Optimality conditions for vector equilibrium problems with constraints,, J. Ind. Manag. Optim., 5 (2009), 783.  doi: 10.3934/jimo.2009.5.783.  Google Scholar

[30]

R. T. Rockafellar, "Conjugate Duality and Optimization,", Society for Industrial and Applied Mathematics, (1974).   Google Scholar

[31]

J. Salamon, Closedness and Hadamard well-posedness of the solution map for parametric vector equilibrium problems,, J. Global Optim., 47 (2010), 173.  doi: 10.1007/s10898-009-9464-5.  Google Scholar

[32]

C. Zălinescu, "Convex Analysis in General Vector Spaces,", World Scientific, (2002).  doi: 10.1142/9789812777096.  Google Scholar

show all references

References:
[1]

L. Q. Anh, P. Q. Khanh, D. T. M. Van and J. C. Yao, Well-posedness for vector quasiequilibria,, Taiwanese J. Math., 13 (2009), 713.   Google Scholar

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, On generalized vector equilibrium problems,, Nonlinear Anal., 47 (2001), 543.  doi: 10.1016/S0362-546X(01)00199-7.  Google Scholar

[3]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Existence of a solution and variational principles for vector equilibrium problems,, J. Optim. Theory Appl., 110 (2001), 481.  doi: 10.1023/A:1017581009670.  Google Scholar

[4]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations of solutions for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.  doi: 10.1023/A:1015366419163.  Google Scholar

[5]

Q. H. Ansari, W. Oettli and D. Schläger, A generalization of vectorial equilibria,, Math. Meth. Oper. Res., 46 (1997), 147.  doi: 10.1007/BF01217687.  Google Scholar

[6]

Q. H. Ansari, X. Q. Yang and J. C. Yao, Existence and duality of implicit vector variational problems,, Numer. Funct. Anal. Optim., 22 (2001), 815.  doi: 10.1081/NFA-100108310.  Google Scholar

[7]

M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions,, J. Optim. Theory Appl., 92 (1997), 527.  doi: 10.1023/A:1022603406244.  Google Scholar

[8]

M. Bianchi, G. Kassay and R. Pini, Ekeland's principle for vector equilibrium problems,, Nonlinear Anal., 66 (2007), 1454.  doi: 10.1016/j.na.2006.02.003.  Google Scholar

[9]

M. Bianchi, G. Kassay and R. Pini, Well-posedness for vector equilibrium problems,, Math. Meth. Oper. Res., 70 (2009), 171.  doi: 10.1007/s00186-008-0239-4.  Google Scholar

[10]

G. Bigi, A. Capătă and G. Kassay, Existence results for strong vector equilibrium problems and their applications,, Optimization, 61 (2012), 567.  doi: 10.1080/02331934.2010.528761.  Google Scholar

[11]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,, Math. Stud., 63 (1994), 123.   Google Scholar

[12]

J. M. Borwein and R. Goebel, Notions of relative interior in Banach spaces,, J. Math. Sci., 115 (2003), 2542.  doi: 10.1023/A:1022988116044.  Google Scholar

[13]

J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory,, Math. Prog., 57 (1992), 15.  doi: 10.1007/BF01581072.  Google Scholar

[14]

J. M. Borwein and V. Jeyakumar, On convexlike Lagrangian and minimax theorems,, Research Report 24, (1988).   Google Scholar

[15]

F. Cammaroto and B. Di Bella, Separation theorem based on the quasirelative interior and application to duality theory,, J. Optim. Theory Appl., 125 (2005), 223.  doi: 10.1007/s10957-004-1724-4.  Google Scholar

[16]

A. Capătă and G. Kassay, On vector equilibrium problems and applications,, Taiwanese J. Math., 15 (2011), 365.   Google Scholar

[17]

A. Capătă, Optimality conditions for extended Ky Fan inequality with cone and affine constraints and their applications,, J. Optim. Theory. Appl., 152 (2012), 661.  doi: 10.1007/s10957-011-9916-1.  Google Scholar

[18]

P. Daniele, S. Giuffrè and A. Maugeri, Infinite dimensional duality and applications,, Math. Ann., 339 (2007), 221.  doi: 10.1007/s00208-007-0118-y.  Google Scholar

[19]

K. Fan, Minimax theorems,, Proc. National Acad. Sci. USA, 39 (1953), 42.  doi: 10.1073/pnas.39.1.42.  Google Scholar

[20]

K. Fan, A minimax inequality and applications,, in, (1972), 103.   Google Scholar

[21]

F. Giannessi, "Vector Variational Inequalities and Vector Equilibria,", Kluwer Academic Publishers, (2000).  doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[22]

X. H. Gong, Optimality conditions for vector equilibrium problems,, J. Math. Anal. Appl., 342 (2008), 1455.  doi: 10.1016/j.jmaa.2008.01.026.  Google Scholar

[23]

R. B. Holmes, "Geometric Functional Analysis and its Applications,", Springer-Verlag, (1975).   Google Scholar

[24]

K. Kimura and J. C. Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 649.   Google Scholar

[25]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric generalized quasi vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 2233.   Google Scholar

[26]

M. A. Limber and R. K. Goodrich, Quasi interiors, Lagrange multipliers and $L^p$ spectral estimation with lattice bounds,, J. Optim. Theory Appl., 78 (1993), 143.  doi: 10.1007/BF00940705.  Google Scholar

[27]

B. C. Ma and X. H. Gong, Optimality conditions for vector equilibrium problems in normed spaces,, Optimization, 60 (2011), 1441.  doi: 10.1080/02331931003657709.  Google Scholar

[28]

Q. Qiu, Optimality conditions of globally efficient solutions for vector equilibrium problems with generalized convexity,, J. Ineq. Appl., (2009).  doi: 10.1155/2009/898213.  Google Scholar

[29]

Q. S. Qiu, Optimality conditions for vector equilibrium problems with constraints,, J. Ind. Manag. Optim., 5 (2009), 783.  doi: 10.3934/jimo.2009.5.783.  Google Scholar

[30]

R. T. Rockafellar, "Conjugate Duality and Optimization,", Society for Industrial and Applied Mathematics, (1974).   Google Scholar

[31]

J. Salamon, Closedness and Hadamard well-posedness of the solution map for parametric vector equilibrium problems,, J. Global Optim., 47 (2010), 173.  doi: 10.1007/s10898-009-9464-5.  Google Scholar

[32]

C. Zălinescu, "Convex Analysis in General Vector Spaces,", World Scientific, (2002).  doi: 10.1142/9789812777096.  Google Scholar

[1]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[2]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[3]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[4]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[5]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[6]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[7]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[8]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[9]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[10]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[11]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[12]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[13]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[14]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[15]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[16]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[19]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[20]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]