\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces

Abstract Related Papers Cited by
  • By using properties of dualizing parametrization functions, Lagrangian functions and the epigraph technique, some sufficient and necessary conditions of the stable strong duality and strong total duality for a class of DC optimization problems are established.
    Mathematics Subject Classification: Primary: 90C26, 90C46; Secondary: 90C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory, Math. Program., 57 (1992), 15-48.doi: 10.1007/BF01581072.

    [2]

    R. I. Boţ, E. R. Csetnek and G. Wanka, Regularity conditions via quasi-relative interior in convex programming, SIAM J. Optim., 19 (2008), 217-233.doi: 10.1137/07068432X.

    [3]

    R. I. Boţ, S. M. Grad and G. Wanka, On strong and total Lagrange duality for convex optimization problems, J. Math. Anal. Appl., 337 (2008), 1315-1325.doi: 10.1016/j.jmaa.2007.04.071.

    [4]

    R. I. Boţ, S. M. Grad and G. Wanka, New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Anal., 69 (2008), 323-336.doi: 10.1016/j.na.2007.05.021.

    [5]

    R. S. Burachik and V. Jeyakumar, A dual condition for the convex subdifferential sum formula with applications, J. Convex Anal., 12 (2005), 279-290.

    [6]

    R. S. Burachik and V. Jeyakumar, A simple closure condition for the normal cone intersection formula, Proc. Amer. Math. Soc., 133 (2005), 1741-1748.doi: 10.1090/S0002-9939-04-07844-X.

    [7]

    R. S. Burachik, V. Jeyakumar and Z. Y. Wu, Necessary and sufficient conditions for stable conjugate duality, Nonlinear Anal., 64 (2006), 1998-2006.doi: 10.1016/j.na.2005.07.034.

    [8]

    B. D. Craven, "Mathematical Programming and Control Theory," Chapman and Hall, London, 1978.

    [9]

    N. Dinh, T. T. A. Nghia and G. Vallet, A closedness condition and its applications to DC programs with convex constraints, Optimization, 59 (2010), 541-560.doi: 10.1080/02331930801951348.

    [10]

    D. H. Fang, C. Li and X. Q. Yang, Stable and total Fenchel duality for DC optimization problems in locally convex spaces, SIAM J. Optim., 21 (2011), 730-760.doi: 10.1137/100789749.

    [11]

    M. S. Gowda and M. Teboulle, A comparison of constraint qualifications in infinite dimensional convex programming, SIAM J. Control Optim., 28 (1990), 925-935.doi: 10.1137/0328051.

    [12]

    V. Jeyakumar and B. M. Glover, Characterizing global optimality for DC optimization problems under convex inequality constraints, J. Global Optim., 8 (1996), 171-187.doi: 10.1007/BF00138691.

    [13]

    V. Jeyakumar and G. M. Lee, Complete characterizations of stable Farkas' lemma and cone-convex programming duality, Math. Program., Ser. A, 114 (2008), 335-347.doi: 10.1007/s10107-007-0104-x.

    [14]

    B. Lemaire and M. Volle, Duality in DC programming, in "Nonconvex Optim. Appl., 27" (eds. J. P. Crouzeix, J. E. Martinez-Legaz and M. Volle), Kluwer Academic, Dordrecht, (1998), 331-345.doi: 10.1007/978-1-4613-3341-8_15.

    [15]

    C. Li, D. H. Fang, G. López and M. A. López, Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM, J. Optim., 20 (2009), 1032-1051.doi: 10.1137/080734352.

    [16]

    C. Li, F. Ng and T. K. Pong, The SECQ, linear regularity and the strong CHIP for infinite system of closed convex sets in normed linear spaces, SIAM J. Optim., 18 (2007), 643-665.doi: 10.1137/060652087.

    [17]

    J. E. Martinez-Legaz and M. Volle, Duality in DC programming: The case of several constraints, J. Math. Anal. Appl., 237 (1999), 657-671.doi: 10.1006/jmaa.1999.6496.

    [18]

    R. T. Rockafellar, "Conjuagate Duality and Optimization," Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics 16, Society for Industrial and Applied Mathematics, Philadelphia, 1974.

    [19]

    X. T. Xiao, J. Gu, L. W. Zhang and S. W. Zhang, A sequential convex program method to DC program with joint chance constraints, J. Ind. Manag. Optim., 8 (2012), 733-747.doi: 10.3934/jimo.2012.8.733.

    [20]

    C. Zălinescu, "Convex Analysis in General Vector Space," World Sciencetific Publishing, Singapore, 2002.doi: 10.1142/9789812777096.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return