July  2013, 9(3): 671-687. doi: 10.3934/jimo.2013.9.671

Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces

1. 

Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

3. 

Department of Mathematics, Soochow University, Suzhou, 215006

Received  June 2011 Revised  March 2013 Published  April 2013

By using properties of dualizing parametrization functions, Lagrangian functions and the epigraph technique, some sufficient and necessary conditions of the stable strong duality and strong total duality for a class of DC optimization problems are established.
Citation: Gang Li, Xiaoqi Yang, Yuying Zhou. Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces. Journal of Industrial and Management Optimization, 2013, 9 (3) : 671-687. doi: 10.3934/jimo.2013.9.671
References:
[1]

J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory, Math. Program., 57 (1992), 15-48. doi: 10.1007/BF01581072.

[2]

R. I. Boţ, E. R. Csetnek and G. Wanka, Regularity conditions via quasi-relative interior in convex programming, SIAM J. Optim., 19 (2008), 217-233. doi: 10.1137/07068432X.

[3]

R. I. Boţ, S. M. Grad and G. Wanka, On strong and total Lagrange duality for convex optimization problems, J. Math. Anal. Appl., 337 (2008), 1315-1325. doi: 10.1016/j.jmaa.2007.04.071.

[4]

R. I. Boţ, S. M. Grad and G. Wanka, New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Anal., 69 (2008), 323-336. doi: 10.1016/j.na.2007.05.021.

[5]

R. S. Burachik and V. Jeyakumar, A dual condition for the convex subdifferential sum formula with applications, J. Convex Anal., 12 (2005), 279-290.

[6]

R. S. Burachik and V. Jeyakumar, A simple closure condition for the normal cone intersection formula, Proc. Amer. Math. Soc., 133 (2005), 1741-1748. doi: 10.1090/S0002-9939-04-07844-X.

[7]

R. S. Burachik, V. Jeyakumar and Z. Y. Wu, Necessary and sufficient conditions for stable conjugate duality, Nonlinear Anal., 64 (2006), 1998-2006. doi: 10.1016/j.na.2005.07.034.

[8]

B. D. Craven, "Mathematical Programming and Control Theory," Chapman and Hall, London, 1978.

[9]

N. Dinh, T. T. A. Nghia and G. Vallet, A closedness condition and its applications to DC programs with convex constraints, Optimization, 59 (2010), 541-560. doi: 10.1080/02331930801951348.

[10]

D. H. Fang, C. Li and X. Q. Yang, Stable and total Fenchel duality for DC optimization problems in locally convex spaces, SIAM J. Optim., 21 (2011), 730-760. doi: 10.1137/100789749.

[11]

M. S. Gowda and M. Teboulle, A comparison of constraint qualifications in infinite dimensional convex programming, SIAM J. Control Optim., 28 (1990), 925-935. doi: 10.1137/0328051.

[12]

V. Jeyakumar and B. M. Glover, Characterizing global optimality for DC optimization problems under convex inequality constraints, J. Global Optim., 8 (1996), 171-187. doi: 10.1007/BF00138691.

[13]

V. Jeyakumar and G. M. Lee, Complete characterizations of stable Farkas' lemma and cone-convex programming duality, Math. Program., Ser. A, 114 (2008), 335-347. doi: 10.1007/s10107-007-0104-x.

[14]

B. Lemaire and M. Volle, Duality in DC programming, in "Nonconvex Optim. Appl., 27" (eds. J. P. Crouzeix, J. E. Martinez-Legaz and M. Volle), Kluwer Academic, Dordrecht, (1998), 331-345. doi: 10.1007/978-1-4613-3341-8_15.

[15]

C. Li, D. H. Fang, G. López and M. A. López, Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM, J. Optim., 20 (2009), 1032-1051. doi: 10.1137/080734352.

[16]

C. Li, F. Ng and T. K. Pong, The SECQ, linear regularity and the strong CHIP for infinite system of closed convex sets in normed linear spaces, SIAM J. Optim., 18 (2007), 643-665. doi: 10.1137/060652087.

[17]

J. E. Martinez-Legaz and M. Volle, Duality in DC programming: The case of several constraints, J. Math. Anal. Appl., 237 (1999), 657-671. doi: 10.1006/jmaa.1999.6496.

[18]

R. T. Rockafellar, "Conjuagate Duality and Optimization," Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics 16, Society for Industrial and Applied Mathematics, Philadelphia, 1974.

[19]

X. T. Xiao, J. Gu, L. W. Zhang and S. W. Zhang, A sequential convex program method to DC program with joint chance constraints, J. Ind. Manag. Optim., 8 (2012), 733-747. doi: 10.3934/jimo.2012.8.733.

[20]

C. Zălinescu, "Convex Analysis in General Vector Space," World Sciencetific Publishing, Singapore, 2002. doi: 10.1142/9789812777096.

show all references

References:
[1]

J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory, Math. Program., 57 (1992), 15-48. doi: 10.1007/BF01581072.

[2]

R. I. Boţ, E. R. Csetnek and G. Wanka, Regularity conditions via quasi-relative interior in convex programming, SIAM J. Optim., 19 (2008), 217-233. doi: 10.1137/07068432X.

[3]

R. I. Boţ, S. M. Grad and G. Wanka, On strong and total Lagrange duality for convex optimization problems, J. Math. Anal. Appl., 337 (2008), 1315-1325. doi: 10.1016/j.jmaa.2007.04.071.

[4]

R. I. Boţ, S. M. Grad and G. Wanka, New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Anal., 69 (2008), 323-336. doi: 10.1016/j.na.2007.05.021.

[5]

R. S. Burachik and V. Jeyakumar, A dual condition for the convex subdifferential sum formula with applications, J. Convex Anal., 12 (2005), 279-290.

[6]

R. S. Burachik and V. Jeyakumar, A simple closure condition for the normal cone intersection formula, Proc. Amer. Math. Soc., 133 (2005), 1741-1748. doi: 10.1090/S0002-9939-04-07844-X.

[7]

R. S. Burachik, V. Jeyakumar and Z. Y. Wu, Necessary and sufficient conditions for stable conjugate duality, Nonlinear Anal., 64 (2006), 1998-2006. doi: 10.1016/j.na.2005.07.034.

[8]

B. D. Craven, "Mathematical Programming and Control Theory," Chapman and Hall, London, 1978.

[9]

N. Dinh, T. T. A. Nghia and G. Vallet, A closedness condition and its applications to DC programs with convex constraints, Optimization, 59 (2010), 541-560. doi: 10.1080/02331930801951348.

[10]

D. H. Fang, C. Li and X. Q. Yang, Stable and total Fenchel duality for DC optimization problems in locally convex spaces, SIAM J. Optim., 21 (2011), 730-760. doi: 10.1137/100789749.

[11]

M. S. Gowda and M. Teboulle, A comparison of constraint qualifications in infinite dimensional convex programming, SIAM J. Control Optim., 28 (1990), 925-935. doi: 10.1137/0328051.

[12]

V. Jeyakumar and B. M. Glover, Characterizing global optimality for DC optimization problems under convex inequality constraints, J. Global Optim., 8 (1996), 171-187. doi: 10.1007/BF00138691.

[13]

V. Jeyakumar and G. M. Lee, Complete characterizations of stable Farkas' lemma and cone-convex programming duality, Math. Program., Ser. A, 114 (2008), 335-347. doi: 10.1007/s10107-007-0104-x.

[14]

B. Lemaire and M. Volle, Duality in DC programming, in "Nonconvex Optim. Appl., 27" (eds. J. P. Crouzeix, J. E. Martinez-Legaz and M. Volle), Kluwer Academic, Dordrecht, (1998), 331-345. doi: 10.1007/978-1-4613-3341-8_15.

[15]

C. Li, D. H. Fang, G. López and M. A. López, Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM, J. Optim., 20 (2009), 1032-1051. doi: 10.1137/080734352.

[16]

C. Li, F. Ng and T. K. Pong, The SECQ, linear regularity and the strong CHIP for infinite system of closed convex sets in normed linear spaces, SIAM J. Optim., 18 (2007), 643-665. doi: 10.1137/060652087.

[17]

J. E. Martinez-Legaz and M. Volle, Duality in DC programming: The case of several constraints, J. Math. Anal. Appl., 237 (1999), 657-671. doi: 10.1006/jmaa.1999.6496.

[18]

R. T. Rockafellar, "Conjuagate Duality and Optimization," Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics 16, Society for Industrial and Applied Mathematics, Philadelphia, 1974.

[19]

X. T. Xiao, J. Gu, L. W. Zhang and S. W. Zhang, A sequential convex program method to DC program with joint chance constraints, J. Ind. Manag. Optim., 8 (2012), 733-747. doi: 10.3934/jimo.2012.8.733.

[20]

C. Zălinescu, "Convex Analysis in General Vector Space," World Sciencetific Publishing, Singapore, 2002. doi: 10.1142/9789812777096.

[1]

Gang Li, Yinghong Xu, Zhenhua Qin. Optimality conditions for composite DC infinite programming problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022064

[2]

Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks and Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633

[3]

Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial and Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004

[4]

Changzhi Wu, Chaojie Li, Qiang Long. A DC programming approach for sensor network localization with uncertainties in anchor positions. Journal of Industrial and Management Optimization, 2014, 10 (3) : 817-826. doi: 10.3934/jimo.2014.10.817

[5]

Jian Gu, Xiantao Xiao, Liwei Zhang. A subgradient-based convex approximations method for DC programming and its applications. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1349-1366. doi: 10.3934/jimo.2016.12.1349

[6]

Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167

[7]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[8]

Yanjun Wang, Kaiji Shen. A new concave reformulation and its application in solving DC programming globally under uncertain environment. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2351-2367. doi: 10.3934/jimo.2019057

[9]

Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439

[10]

Huijuan Li, Robert Baier, Lars Grüne, Sigurdur F. Hafstein, Fabian R. Wirth. Computation of local ISS Lyapunov functions with low gains via linear programming. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2477-2495. doi: 10.3934/dcdsb.2015.20.2477

[11]

Bao Qing Hu, Song Wang. A novel approach in uncertain programming part II: a class of constrained nonlinear programming problems with interval objective functions. Journal of Industrial and Management Optimization, 2006, 2 (4) : 373-385. doi: 10.3934/jimo.2006.2.373

[12]

Chetan D. Pahlajani. Randomly perturbed switching dynamics of a dc/dc converter. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 569-584. doi: 10.3934/dcdsb.2017027

[13]

Jeongmin Han. Local Lipschitz regularity for functions satisfying a time-dependent dynamic programming principle. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2617-2640. doi: 10.3934/cpaa.2020114

[14]

Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial and Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739

[15]

Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001

[16]

József Abaffy. A new reprojection of the conjugate directions. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 157-171. doi: 10.3934/naco.2019012

[17]

E. Fossas-Colet, J.M. Olm-Miras. Asymptotic tracking in DC-to-DC nonlinear power converters. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 295-307. doi: 10.3934/dcdsb.2002.2.295

[18]

Najeeb Abdulaleem. Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type Ⅰ functions. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022004

[19]

Lei Zhang, Anfu Zhu, Aiguo Wu, Lingling Lv. Parametric solutions to the regulator-conjugate matrix equations. Journal of Industrial and Management Optimization, 2017, 13 (2) : 623-631. doi: 10.3934/jimo.2016036

[20]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial and Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]