-
Previous Article
Convex hull of the orthogonal similarity set with applications in quadratic assignment problems
- JIMO Home
- This Issue
-
Next Article
Optimality conditions for vector equilibrium problems and their applications
Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces
1. | Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong |
3. | Department of Mathematics, Soochow University, Suzhou, 215006 |
References:
[1] |
J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory, Math. Program., 57 (1992), 15-48.
doi: 10.1007/BF01581072. |
[2] |
R. I. Boţ, E. R. Csetnek and G. Wanka, Regularity conditions via quasi-relative interior in convex programming, SIAM J. Optim., 19 (2008), 217-233.
doi: 10.1137/07068432X. |
[3] |
R. I. Boţ, S. M. Grad and G. Wanka, On strong and total Lagrange duality for convex optimization problems, J. Math. Anal. Appl., 337 (2008), 1315-1325.
doi: 10.1016/j.jmaa.2007.04.071. |
[4] |
R. I. Boţ, S. M. Grad and G. Wanka, New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Anal., 69 (2008), 323-336.
doi: 10.1016/j.na.2007.05.021. |
[5] |
R. S. Burachik and V. Jeyakumar, A dual condition for the convex subdifferential sum formula with applications, J. Convex Anal., 12 (2005), 279-290. |
[6] |
R. S. Burachik and V. Jeyakumar, A simple closure condition for the normal cone intersection formula, Proc. Amer. Math. Soc., 133 (2005), 1741-1748.
doi: 10.1090/S0002-9939-04-07844-X. |
[7] |
R. S. Burachik, V. Jeyakumar and Z. Y. Wu, Necessary and sufficient conditions for stable conjugate duality, Nonlinear Anal., 64 (2006), 1998-2006.
doi: 10.1016/j.na.2005.07.034. |
[8] |
B. D. Craven, "Mathematical Programming and Control Theory," Chapman and Hall, London, 1978. |
[9] |
N. Dinh, T. T. A. Nghia and G. Vallet, A closedness condition and its applications to DC programs with convex constraints, Optimization, 59 (2010), 541-560.
doi: 10.1080/02331930801951348. |
[10] |
D. H. Fang, C. Li and X. Q. Yang, Stable and total Fenchel duality for DC optimization problems in locally convex spaces, SIAM J. Optim., 21 (2011), 730-760.
doi: 10.1137/100789749. |
[11] |
M. S. Gowda and M. Teboulle, A comparison of constraint qualifications in infinite dimensional convex programming, SIAM J. Control Optim., 28 (1990), 925-935.
doi: 10.1137/0328051. |
[12] |
V. Jeyakumar and B. M. Glover, Characterizing global optimality for DC optimization problems under convex inequality constraints, J. Global Optim., 8 (1996), 171-187.
doi: 10.1007/BF00138691. |
[13] |
V. Jeyakumar and G. M. Lee, Complete characterizations of stable Farkas' lemma and cone-convex programming duality, Math. Program., Ser. A, 114 (2008), 335-347.
doi: 10.1007/s10107-007-0104-x. |
[14] |
B. Lemaire and M. Volle, Duality in DC programming, in "Nonconvex Optim. Appl., 27" (eds. J. P. Crouzeix, J. E. Martinez-Legaz and M. Volle), Kluwer Academic, Dordrecht, (1998), 331-345.
doi: 10.1007/978-1-4613-3341-8_15. |
[15] |
C. Li, D. H. Fang, G. López and M. A. López, Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM, J. Optim., 20 (2009), 1032-1051.
doi: 10.1137/080734352. |
[16] |
C. Li, F. Ng and T. K. Pong, The SECQ, linear regularity and the strong CHIP for infinite system of closed convex sets in normed linear spaces, SIAM J. Optim., 18 (2007), 643-665.
doi: 10.1137/060652087. |
[17] |
J. E. Martinez-Legaz and M. Volle, Duality in DC programming: The case of several constraints, J. Math. Anal. Appl., 237 (1999), 657-671.
doi: 10.1006/jmaa.1999.6496. |
[18] |
R. T. Rockafellar, "Conjuagate Duality and Optimization," Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics 16, Society for Industrial and Applied Mathematics, Philadelphia, 1974. |
[19] |
X. T. Xiao, J. Gu, L. W. Zhang and S. W. Zhang, A sequential convex program method to DC program with joint chance constraints, J. Ind. Manag. Optim., 8 (2012), 733-747.
doi: 10.3934/jimo.2012.8.733. |
[20] |
C. Zălinescu, "Convex Analysis in General Vector Space," World Sciencetific Publishing, Singapore, 2002.
doi: 10.1142/9789812777096. |
show all references
References:
[1] |
J. M. Borwein and A. S. Lewis, Partially finite convex programming, part I: Quasi relative interiors and duality theory, Math. Program., 57 (1992), 15-48.
doi: 10.1007/BF01581072. |
[2] |
R. I. Boţ, E. R. Csetnek and G. Wanka, Regularity conditions via quasi-relative interior in convex programming, SIAM J. Optim., 19 (2008), 217-233.
doi: 10.1137/07068432X. |
[3] |
R. I. Boţ, S. M. Grad and G. Wanka, On strong and total Lagrange duality for convex optimization problems, J. Math. Anal. Appl., 337 (2008), 1315-1325.
doi: 10.1016/j.jmaa.2007.04.071. |
[4] |
R. I. Boţ, S. M. Grad and G. Wanka, New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Anal., 69 (2008), 323-336.
doi: 10.1016/j.na.2007.05.021. |
[5] |
R. S. Burachik and V. Jeyakumar, A dual condition for the convex subdifferential sum formula with applications, J. Convex Anal., 12 (2005), 279-290. |
[6] |
R. S. Burachik and V. Jeyakumar, A simple closure condition for the normal cone intersection formula, Proc. Amer. Math. Soc., 133 (2005), 1741-1748.
doi: 10.1090/S0002-9939-04-07844-X. |
[7] |
R. S. Burachik, V. Jeyakumar and Z. Y. Wu, Necessary and sufficient conditions for stable conjugate duality, Nonlinear Anal., 64 (2006), 1998-2006.
doi: 10.1016/j.na.2005.07.034. |
[8] |
B. D. Craven, "Mathematical Programming and Control Theory," Chapman and Hall, London, 1978. |
[9] |
N. Dinh, T. T. A. Nghia and G. Vallet, A closedness condition and its applications to DC programs with convex constraints, Optimization, 59 (2010), 541-560.
doi: 10.1080/02331930801951348. |
[10] |
D. H. Fang, C. Li and X. Q. Yang, Stable and total Fenchel duality for DC optimization problems in locally convex spaces, SIAM J. Optim., 21 (2011), 730-760.
doi: 10.1137/100789749. |
[11] |
M. S. Gowda and M. Teboulle, A comparison of constraint qualifications in infinite dimensional convex programming, SIAM J. Control Optim., 28 (1990), 925-935.
doi: 10.1137/0328051. |
[12] |
V. Jeyakumar and B. M. Glover, Characterizing global optimality for DC optimization problems under convex inequality constraints, J. Global Optim., 8 (1996), 171-187.
doi: 10.1007/BF00138691. |
[13] |
V. Jeyakumar and G. M. Lee, Complete characterizations of stable Farkas' lemma and cone-convex programming duality, Math. Program., Ser. A, 114 (2008), 335-347.
doi: 10.1007/s10107-007-0104-x. |
[14] |
B. Lemaire and M. Volle, Duality in DC programming, in "Nonconvex Optim. Appl., 27" (eds. J. P. Crouzeix, J. E. Martinez-Legaz and M. Volle), Kluwer Academic, Dordrecht, (1998), 331-345.
doi: 10.1007/978-1-4613-3341-8_15. |
[15] |
C. Li, D. H. Fang, G. López and M. A. López, Stable and total Fenchel duality for convex optimization problems in locally convex spaces, SIAM, J. Optim., 20 (2009), 1032-1051.
doi: 10.1137/080734352. |
[16] |
C. Li, F. Ng and T. K. Pong, The SECQ, linear regularity and the strong CHIP for infinite system of closed convex sets in normed linear spaces, SIAM J. Optim., 18 (2007), 643-665.
doi: 10.1137/060652087. |
[17] |
J. E. Martinez-Legaz and M. Volle, Duality in DC programming: The case of several constraints, J. Math. Anal. Appl., 237 (1999), 657-671.
doi: 10.1006/jmaa.1999.6496. |
[18] |
R. T. Rockafellar, "Conjuagate Duality and Optimization," Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics 16, Society for Industrial and Applied Mathematics, Philadelphia, 1974. |
[19] |
X. T. Xiao, J. Gu, L. W. Zhang and S. W. Zhang, A sequential convex program method to DC program with joint chance constraints, J. Ind. Manag. Optim., 8 (2012), 733-747.
doi: 10.3934/jimo.2012.8.733. |
[20] |
C. Zălinescu, "Convex Analysis in General Vector Space," World Sciencetific Publishing, Singapore, 2002.
doi: 10.1142/9789812777096. |
[1] |
Gang Li, Yinghong Xu, Zhenhua Qin. Optimality conditions for composite DC infinite programming problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022064 |
[2] |
Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks and Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633 |
[3] |
Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial and Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004 |
[4] |
Changzhi Wu, Chaojie Li, Qiang Long. A DC programming approach for sensor network localization with uncertainties in anchor positions. Journal of Industrial and Management Optimization, 2014, 10 (3) : 817-826. doi: 10.3934/jimo.2014.10.817 |
[5] |
Jian Gu, Xiantao Xiao, Liwei Zhang. A subgradient-based convex approximations method for DC programming and its applications. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1349-1366. doi: 10.3934/jimo.2016.12.1349 |
[6] |
Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167 |
[7] |
Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9 |
[8] |
Yanjun Wang, Kaiji Shen. A new concave reformulation and its application in solving DC programming globally under uncertain environment. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2351-2367. doi: 10.3934/jimo.2019057 |
[9] |
Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439 |
[10] |
Huijuan Li, Robert Baier, Lars Grüne, Sigurdur F. Hafstein, Fabian R. Wirth. Computation of local ISS Lyapunov functions with low gains via linear programming. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2477-2495. doi: 10.3934/dcdsb.2015.20.2477 |
[11] |
Bao Qing Hu, Song Wang. A novel approach in uncertain programming part II: a class of constrained nonlinear programming problems with interval objective functions. Journal of Industrial and Management Optimization, 2006, 2 (4) : 373-385. doi: 10.3934/jimo.2006.2.373 |
[12] |
Chetan D. Pahlajani. Randomly perturbed switching dynamics of a dc/dc converter. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 569-584. doi: 10.3934/dcdsb.2017027 |
[13] |
Jeongmin Han. Local Lipschitz regularity for functions satisfying a time-dependent dynamic programming principle. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2617-2640. doi: 10.3934/cpaa.2020114 |
[14] |
Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial and Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739 |
[15] |
Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001 |
[16] |
József Abaffy. A new reprojection of the conjugate directions. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 157-171. doi: 10.3934/naco.2019012 |
[17] |
E. Fossas-Colet, J.M. Olm-Miras. Asymptotic tracking in DC-to-DC nonlinear power converters. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 295-307. doi: 10.3934/dcdsb.2002.2.295 |
[18] |
Najeeb Abdulaleem. Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type Ⅰ functions. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022004 |
[19] |
Lei Zhang, Anfu Zhu, Aiguo Wu, Lingling Lv. Parametric solutions to the regulator-conjugate matrix equations. Journal of Industrial and Management Optimization, 2017, 13 (2) : 623-631. doi: 10.3934/jimo.2016036 |
[20] |
Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial and Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]