
Previous Article
Computable representation of the cone of nonnegative quadratic forms over a general secondorder cone and its application to completely positive programming
 JIMO Home
 This Issue

Next Article
Stable strong and total parametrized dualities for DC optimization problems in locally convex spaces
Convex hull of the orthogonal similarity set with applications in quadratic assignment problems
1.  State Key Laboratory of Software Development Environment, LMIB of the Ministry of Education, School of Mathematics and System Sciences, Beihang University, Beijing, 100191, China 
References:
[1] 
K. M. Anstreicher and H. Wolkowicz, On lagrangian relaxation of quadratic matrix constraints, SIAM J. Matrix Anal. Appl., 22 (2000), 4155. doi: 10.1137/S0895479898340299. 
[2] 
K. M. Anstreicher, Eigenvalue bounds versus semidefinite relaxations for the quadratic assignment problem, SIAM Journal on Optimization, 11 (2001), 254265. doi: 10.1137/S1052623499354904. 
[3] 
K. M. Anstreicher and N. W. Brixius, A new bound for the quadratic assignment problem based on convex quadratic programming, Mathematical Programming Ser. A, 89 (2001), 341357. doi: 10.1007/PL00011402. 
[4] 
K. M. Anstreicher, Recent advances in the solution of quadratic assignment Problems, Mathematical Programming Ser. B, 97 (2003), 2442. 
[5] 
R. E. Burkard, Locations with spatial interactions: The quadratic assignment problem, in "Discrete Location Theory" (eds. P. B.Mirchandani and R. L.Francis), Wiley, New York, (1991), 387437. 
[6] 
R. E. Burkard, E. Çela, P. M. Pardalos and L. S. Pitsoulis, The quadratic assignment Problem, in "Handbook of Combinatorial Optimization" (eds. D.Z. Du and P. M. Pardalos), 3, Kluwer, (1998), 241337. 
[7] 
E. Çela, "The Quadratic Assignment Problem: Theory and Algorithms," Kluwer Academic Publishers, Dordrecht, 1998. 
[8] 
Y. Ding and H. Wolkowicz, A lowdimensional semidefinite relaxation for the quadratic assignment problem, Mathematics of Operations Research, 34 (2009), 10081022. doi: 10.1287/moor.1090.0419. 
[9] 
C. S. Edwards, The derivation of a greedy approximator for the KoopmansBeckmann quadratic assignment problem, Proceedings of the 77th Combinatorial Programming Conference (CP77) (1977), 5586. 
[10] 
C. S. Edwards, A branch and bound algorithm for the KoopmansBeckmann quadratic assignment problem, Mathematical Programming Study, 13 (1980), 3552. 
[11] 
P. A. Fillmore and J. P. Williams, Some convexity theorems for matrices, Glasgow Math. J., 12 (1971), 110117. doi: 10.1017/S0017089500001221. 
[12] 
G. Finke, R. E. Burkard and F. Rendl, Quadratic assignment problems, Ann. Discrete Math., 31 (1987), 6182. doi: 10.1016/S03040208(08)732328. 
[13] 
M. Grant and S. Boyd, "{CVX}: {Matlab} Software for Disciplined Convex Programming," http://cvxr.com/cvx. version 1. 21 (2010) 
[14] 
S. W. Hadley, F. Rendl and H. Wolkowicz, A new lower bound via projection for the quadratic assignment problem, Math. Oper. Res., 17 (1992), 727739. doi: 10.1287/moor.17.3.727. 
[15] 
G. G. Hardy, J. E. Littlewood and G. Pólya, "Inequalities," Cambridge University Press, London and New York, 1952. 
[16] 
E. M. Loiola, N. M. M. Abreu, P. O. BoaventuraNetto, P. Hahn and T. Querido, A survey for the quadratic assignment problem, European Journal of Operational Research, 176 (2007), 657690. doi: 10.1016/j.ejor.2005.09.032. 
[17] 
A. W. Marshall and I. Olkin, "Inequalities: Theory of Majorization and its Application," Academic Press, New York, NY, 1979. 
[18] 
M. L. Overton and R. S. Womersley, On the sum of the largest eigenvalues of a symmetric matrix, SIAM J. Matrix Anal. Appl., 13 (1992), 4145. doi: 10.1137/0613006. 
[19] 
P. M. Pardalos, F. Rendl and H. Wolkowicz, The Quadratic Assignment Problem: A Survey and Recent Developments, in "Quadratic Assignment and Related Problems" (eds. P. M. Pardalos and H. Wolkowicz), 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,AMS. 16 (1994), 142. 
[20] 
S. Sahni and T. Gonzalez, Pcomplete approximation problems, Journal of the Association of Computing Machinery, 23 (1976), 555565. doi: 10.1145/321958.321975. 
[21] 
Y. Xia, Second order cone programming relaxation for quadratic assignment problems, Optimization Methods & Software, 23 (2008), 441449. doi: 10.1080/10556780701843405. 
[22] 
Y. Xia, New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problem, Journal of Industrial and Management Optimization, 5 (2009), 881892. doi: 10.3934/jimo.2009.5.881. 
[23] 
Y. Xia, Convex hull presentation of a quadratically constrained set and its application in solving quadratic programming problems, AsiaPacific Journal of Operational Research, 26 (2009), 769778. doi: 10.1142/S0217595909002468. 
show all references
References:
[1] 
K. M. Anstreicher and H. Wolkowicz, On lagrangian relaxation of quadratic matrix constraints, SIAM J. Matrix Anal. Appl., 22 (2000), 4155. doi: 10.1137/S0895479898340299. 
[2] 
K. M. Anstreicher, Eigenvalue bounds versus semidefinite relaxations for the quadratic assignment problem, SIAM Journal on Optimization, 11 (2001), 254265. doi: 10.1137/S1052623499354904. 
[3] 
K. M. Anstreicher and N. W. Brixius, A new bound for the quadratic assignment problem based on convex quadratic programming, Mathematical Programming Ser. A, 89 (2001), 341357. doi: 10.1007/PL00011402. 
[4] 
K. M. Anstreicher, Recent advances in the solution of quadratic assignment Problems, Mathematical Programming Ser. B, 97 (2003), 2442. 
[5] 
R. E. Burkard, Locations with spatial interactions: The quadratic assignment problem, in "Discrete Location Theory" (eds. P. B.Mirchandani and R. L.Francis), Wiley, New York, (1991), 387437. 
[6] 
R. E. Burkard, E. Çela, P. M. Pardalos and L. S. Pitsoulis, The quadratic assignment Problem, in "Handbook of Combinatorial Optimization" (eds. D.Z. Du and P. M. Pardalos), 3, Kluwer, (1998), 241337. 
[7] 
E. Çela, "The Quadratic Assignment Problem: Theory and Algorithms," Kluwer Academic Publishers, Dordrecht, 1998. 
[8] 
Y. Ding and H. Wolkowicz, A lowdimensional semidefinite relaxation for the quadratic assignment problem, Mathematics of Operations Research, 34 (2009), 10081022. doi: 10.1287/moor.1090.0419. 
[9] 
C. S. Edwards, The derivation of a greedy approximator for the KoopmansBeckmann quadratic assignment problem, Proceedings of the 77th Combinatorial Programming Conference (CP77) (1977), 5586. 
[10] 
C. S. Edwards, A branch and bound algorithm for the KoopmansBeckmann quadratic assignment problem, Mathematical Programming Study, 13 (1980), 3552. 
[11] 
P. A. Fillmore and J. P. Williams, Some convexity theorems for matrices, Glasgow Math. J., 12 (1971), 110117. doi: 10.1017/S0017089500001221. 
[12] 
G. Finke, R. E. Burkard and F. Rendl, Quadratic assignment problems, Ann. Discrete Math., 31 (1987), 6182. doi: 10.1016/S03040208(08)732328. 
[13] 
M. Grant and S. Boyd, "{CVX}: {Matlab} Software for Disciplined Convex Programming," http://cvxr.com/cvx. version 1. 21 (2010) 
[14] 
S. W. Hadley, F. Rendl and H. Wolkowicz, A new lower bound via projection for the quadratic assignment problem, Math. Oper. Res., 17 (1992), 727739. doi: 10.1287/moor.17.3.727. 
[15] 
G. G. Hardy, J. E. Littlewood and G. Pólya, "Inequalities," Cambridge University Press, London and New York, 1952. 
[16] 
E. M. Loiola, N. M. M. Abreu, P. O. BoaventuraNetto, P. Hahn and T. Querido, A survey for the quadratic assignment problem, European Journal of Operational Research, 176 (2007), 657690. doi: 10.1016/j.ejor.2005.09.032. 
[17] 
A. W. Marshall and I. Olkin, "Inequalities: Theory of Majorization and its Application," Academic Press, New York, NY, 1979. 
[18] 
M. L. Overton and R. S. Womersley, On the sum of the largest eigenvalues of a symmetric matrix, SIAM J. Matrix Anal. Appl., 13 (1992), 4145. doi: 10.1137/0613006. 
[19] 
P. M. Pardalos, F. Rendl and H. Wolkowicz, The Quadratic Assignment Problem: A Survey and Recent Developments, in "Quadratic Assignment and Related Problems" (eds. P. M. Pardalos and H. Wolkowicz), 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,AMS. 16 (1994), 142. 
[20] 
S. Sahni and T. Gonzalez, Pcomplete approximation problems, Journal of the Association of Computing Machinery, 23 (1976), 555565. doi: 10.1145/321958.321975. 
[21] 
Y. Xia, Second order cone programming relaxation for quadratic assignment problems, Optimization Methods & Software, 23 (2008), 441449. doi: 10.1080/10556780701843405. 
[22] 
Y. Xia, New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problem, Journal of Industrial and Management Optimization, 5 (2009), 881892. doi: 10.3934/jimo.2009.5.881. 
[23] 
Y. Xia, Convex hull presentation of a quadratically constrained set and its application in solving quadratic programming problems, AsiaPacific Journal of Operational Research, 26 (2009), 769778. doi: 10.1142/S0217595909002468. 
[1] 
Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial and Management Optimization, 2010, 6 (1) : 177196. doi: 10.3934/jimo.2010.6.177 
[2] 
Lingfeng Li, Shousheng Luo, XueCheng Tai, Jiang Yang. A new variational approach based on levelset function for convex hull problem with outliers. Inverse Problems and Imaging, 2021, 15 (2) : 315338. doi: 10.3934/ipi.2020070 
[3] 
Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial and Management Optimization, 2010, 6 (4) : 881893. doi: 10.3934/jimo.2010.6.881 
[4] 
Kien Ming Ng, Trung Hieu Tran. A parallel water flow algorithm with local search for solving the quadratic assignment problem. Journal of Industrial and Management Optimization, 2019, 15 (1) : 235259. doi: 10.3934/jimo.2018041 
[5] 
R. N. Gasimov, O. Ustun. Solving the quadratic assignment problem using FMSG algorithm. Journal of Industrial and Management Optimization, 2007, 3 (2) : 173191. doi: 10.3934/jimo.2007.3.173 
[6] 
Xiaojin Zheng, Zhongyi Jiang. Tighter quadratically constrained convex reformulations for semicontinuous quadratic programming. Journal of Industrial and Management Optimization, 2021, 17 (5) : 23312343. doi: 10.3934/jimo.2020071 
[7] 
Alessandro Ferriero, Nicola Fusco. A note on the convex hull of sets of finite perimeter in the plane. Discrete and Continuous Dynamical Systems  B, 2009, 11 (1) : 103108. doi: 10.3934/dcdsb.2009.11.103 
[8] 
Chenchen Wu, Dachuan Xu, XinYuan Zhao. An improved approximation algorithm for the $2$catalog segmentation problem using semidefinite programming relaxation. Journal of Industrial and Management Optimization, 2012, 8 (1) : 117126. doi: 10.3934/jimo.2012.8.117 
[9] 
Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete and Continuous Dynamical Systems  S, 2012, 5 (3) : 507530. doi: 10.3934/dcdss.2012.5.507 
[10] 
Jiani Wang, Liwei Zhang. Statistical inference of semidefinite programming with multiple parameters. Journal of Industrial and Management Optimization, 2020, 16 (3) : 15271538. doi: 10.3934/jimo.2019015 
[11] 
Daniel Heinlein, Ferdinand Ihringer. New and updated semidefinite programming bounds for subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 613630. doi: 10.3934/amc.2020034 
[12] 
Shouhong Yang. Semidefinite programming via image space analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 11871197. doi: 10.3934/jimo.2016.12.1187 
[13] 
Christine Bachoc, Alberto Passuello, Frank Vallentin. Bounds for projective codes from semidefinite programming. Advances in Mathematics of Communications, 2013, 7 (2) : 127145. doi: 10.3934/amc.2013.7.127 
[14] 
ZhiBin Deng, Ye Tian, Cheng Lu, WenXun Xing. Globally solving quadratic programs with convex objective and complementarity constraints via completely positive programming. Journal of Industrial and Management Optimization, 2018, 14 (2) : 625636. doi: 10.3934/jimo.2017064 
[15] 
Ling Zhang, Xiaoqi Sun. Stability analysis of timevarying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2022035 
[16] 
Bettina Klaus, Frédéric Payot. Paths to stability in the assignment problem. Journal of Dynamics and Games, 2015, 2 (3&4) : 257287. doi: 10.3934/jdg.2015004 
[17] 
Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 193206. doi: 10.3934/naco.2012.2.193 
[18] 
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level secondorder cone programming problem. Journal of Industrial and Management Optimization, 2015, 11 (4) : 11111125. doi: 10.3934/jimo.2015.11.1111 
[19] 
Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving realtime trucktodoor assignment and scheduling problem at cross docking warehouse. Journal of Industrial and Management Optimization, 2016, 12 (2) : 431447. doi: 10.3934/jimo.2016.12.431 
[20] 
Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165174. doi: 10.3934/amc.2012.6.165 
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]