-
Previous Article
On the strong convergence of a modified Hestenes-Stiefel method for nonconvex optimization
- JIMO Home
- This Issue
-
Next Article
Two-warehouse inventory models for deteriorating products with ramp type demand rate
Reduction and dynamic approach for the multi-choice Shapley value
1. | Department of Applied Mathematics, National Dong Hwa University, Hualien 974, Taiwan |
2. | Department of Applied Mathematics, National Pingtung University of Education, Pingtung 900, Taiwan |
References:
[1] |
R. J. Aumann and L. S. Shapley, "Values of Non-Atomic Games,", Princeton University Press, (1974).
|
[2] |
E. Calvo and J. C. Santos, A value for multichoice games,, Mathematical Social Sciences, 40 (2000), 341.
doi: 10.1016/S0165-4896(99)00054-2. |
[3] |
S. Hart and A. Mas-Colell, Potential, value and consistency,, Econometrica, 57 (1989), 589.
doi: 10.2307/1911054. |
[4] |
Y. A. Hwang and Y. H. Liao, Potentializability and consistency for multi-choice solutions,, Spanish Economic Review, 10 (2008), 289. Google Scholar |
[5] |
M. Maschler and G. Owen, The consistent Shapley value for hyperplane games,, International Journal of Game Theory, 18 (1989), 389.
doi: 10.1007/BF01358800. |
[6] |
H. Moulin, On additive methods to share joint costs,, The Japanese Economic Review, 46 (1995), 303. Google Scholar |
[7] |
R. Myerson, Conference structures and fair allocation rules,, International Journal of Game Theory, 9 (1980), 169.
doi: 10.1007/BF01781371. |
[8] |
A. van den Nouweland, J. Potters, S. Tijs and J. M. Zarzuelo, Core and related solution concepts for multi-choice games,, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289.
doi: 10.1007/BF01432361. |
[9] |
L. S. Shapley, A value for $n$-person game,, in, 28 (1953), 307.
|
show all references
References:
[1] |
R. J. Aumann and L. S. Shapley, "Values of Non-Atomic Games,", Princeton University Press, (1974).
|
[2] |
E. Calvo and J. C. Santos, A value for multichoice games,, Mathematical Social Sciences, 40 (2000), 341.
doi: 10.1016/S0165-4896(99)00054-2. |
[3] |
S. Hart and A. Mas-Colell, Potential, value and consistency,, Econometrica, 57 (1989), 589.
doi: 10.2307/1911054. |
[4] |
Y. A. Hwang and Y. H. Liao, Potentializability and consistency for multi-choice solutions,, Spanish Economic Review, 10 (2008), 289. Google Scholar |
[5] |
M. Maschler and G. Owen, The consistent Shapley value for hyperplane games,, International Journal of Game Theory, 18 (1989), 389.
doi: 10.1007/BF01358800. |
[6] |
H. Moulin, On additive methods to share joint costs,, The Japanese Economic Review, 46 (1995), 303. Google Scholar |
[7] |
R. Myerson, Conference structures and fair allocation rules,, International Journal of Game Theory, 9 (1980), 169.
doi: 10.1007/BF01781371. |
[8] |
A. van den Nouweland, J. Potters, S. Tijs and J. M. Zarzuelo, Core and related solution concepts for multi-choice games,, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289.
doi: 10.1007/BF01432361. |
[9] |
L. S. Shapley, A value for $n$-person game,, in, 28 (1953), 307.
|
[1] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[2] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[3] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[4] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[5] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[6] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[7] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[8] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[9] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[10] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[11] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[12] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[13] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]