\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the strong convergence of a modified Hestenes-Stiefel method for nonconvex optimization

Abstract Related Papers Cited by
  • In [8], Zhang et al. proposed a modified three-term HS (MTTHS) conjugate gradient method and proved that this method converges globally for nonconvex minimization in the sense that $\liminf_{k\to\infty}\|\nabla f(x_k)\|=0$ when the Armijo or Wolfe line search is used. In this paper, we further study the convergence property of the MTTHS method. We show that the MTTHS method has strongly global convergence property (i.e., $\lim_{k\to\infty}\|\nabla f(x_k)\|=0$) for nonconvex optimization by the use of the backtracking type line search in [7]. Some preliminary numerical results are reported.
    Mathematics Subject Classification: Primary: 90C30; Secondary: 65K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. R. Hestenes and E. L. Stiefel, Method of conjugate gradient for solving linear systems, J. Res. Nat. Bur. Stand., 49 (1952), 409-432.

    [2]

    D. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math., 129 (2001), 15-35.doi: 10.1016/S0377-0427(00)00540-9.

    [3]

    D. Li and M. Fukushima, On the global convergence of the BFGS method for nonconvex unconstrained optimization problems, SIAM J. Optim., 11 (2001), 1054-1064.doi: 10.1137/S1052623499354242.

    [4]

    J. J. Moré, B. S. Garbow and K. H. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Softw., 7 (1981), 17-41.doi: 10.1145/355934.355936.

    [5]

    E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Rev. Fr. Inform. Rech. Oper., 16 (1969), 35-43.

    [6]

    B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comput. Math. Math. Phys., 9 (1969), 94-112.doi: 10.1016/0041-5553(69)90035-4.

    [7]

    L. Zhang, W. Zhou and D. Li, A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence, IMA J. Numer. Anal., 26 (2006), 629-640.doi: 10.1093/imanum/drl016.

    [8]

    L. Zhang, W. Zhou and D. Li, Some descent three-term conjugate gradient methods and their global convergence, Optim. Meth. Softw., 22 (2007), 697-711.doi: 10.1080/10556780701223293.

    [9]

    W. Zhou and D. LiOn the convergence properties of the unmodified PRP method with a non-descent line search, submitted. doi: 10.1080/10556788.2013.811241.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return