October  2013, 9(4): 901-917. doi: 10.3934/jimo.2013.9.901

Equilibrium joining probabilities in observable queues with general service and setup times

1. 

Department of Mathematics, Beijing Jiaotong University, 100044 Beijing

2. 

Department of Mathematics, University of Northern Iowa, Cedar Falls, IA 50614-0506

Received  October 2012 Revised  March 2013 Published  August 2013

This paper analyzes an M/G/1 queue with general setup times from an economical point of view. In such a queue whenever the system becomes empty, the server is turned off. A new customer's arrival will turn the server on after a setup period. Upon arrival, the customers decide whether to join or balk the queue based on observation of the queue length and the status of the server, along with the reward-cost structure of the system. For the observable and almost observable cases, the equilibrium joining strategies of customers who wish to maximize their expected net benefit are obtained. Two numerical examples are presented to illustrate the equilibrium joining probabilities for these cases under some specific distribution functions of service times and setup times.
Citation: Feng Zhang, Jinting Wang, Bin Liu. Equilibrium joining probabilities in observable queues with general service and setup times. Journal of Industrial and Management Optimization, 2013, 9 (4) : 901-917. doi: 10.3934/jimo.2013.9.901
References:
[1]

E. Altman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue, in "ISDG2002, Vol. I, II" (St. Petersburg), St. Petersburg State Univ. Inst. Chem., St. Petersburg, (2002), 56-64.

[2]

J. R. Artalejo, A. Economou and M. J. Lopez-Herrero, Analysis of a multiserver queue with setup times, Queueing Systems, 51 (2005), 53-76. doi: 10.1007/s11134-005-1740-6.

[3]

W. Bischof, Analysis of M/G/1-queues with setup times and vacations under six different service disciplines, Queueing Systems, 39 (2001), 265-301. doi: 10.1023/A:1013992708103.

[4]

A. Borthakur and G. Choudhury, A multiserver Poisson queue with a general startup time under $N$-policy, Calcutta Statistical Association Bulletin, 49 (1999), 199-213.

[5]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715. doi: 10.1016/j.ejor.2011.11.043.

[6]

A. Burnetas, Customer equilibrium and optimal strategies in Markovian queues in series, Annals of Operations Research, 208 (2013), 515-529. doi: 10.1007/s10479-011-1010-4.

[7]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times, Queueing Systems, 56 (2007), 213-228. doi: 10.1007/s11134-007-9036-7.

[8]

G. Choudhury, On a batch arrival Poisson queue with a random setup and vacation period, Computers & Operations Research, 25 (1998), 1013-1026. doi: 10.1016/S0305-0548(98)00038-0.

[9]

G. Choudhury, An $M^X$/G/1 queueing system with a setup period and a vacation period, Queueing Systems, 36 (2000), 23-38. doi: 10.1023/A:1011089403694.

[10]

A. Economou and S. Kanta, On balking strategies and pricing for the single server Markovian queue with compartmented waiting space, Queueing Systems, 59 (2008), 237-269. doi: 10.1007/s11134-008-9083-8.

[11]

A. Economou and S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs, Operations Research Letters, 36 (2008), 696-699. doi: 10.1016/j.orl.2008.06.006.

[12]

A. Economou and S. Kanta, Equilibrium customer strategies and social-profit maximization in the single-server constant retrial queue, Naval Research Logistics, 58 (2011), 107-122. doi: 10.1002/nav.20444.

[13]

A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times, Performance Evaluation, 68 (2011), 967-982. doi: 10.1016/j.peva.2011.07.001.

[14]

A. Economou and A. Manou, Equilibrium balking strategies for a clearing queueing system in alternating environment, Annals of Operations Research, 208 (2013), 489-514. doi: 10.1007/s10479-011-1025-x.

[15]

N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes, Econometrica, 43 (1975), 81-92. doi: 10.2307/1913415.

[16]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues, Operations Research, 59 (2011), 986-997. doi: 10.1287/opre.1100.0907.

[17]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers, European Journal of Operational Research, 222 (2012), 278-286. doi: 10.1016/j.ejor.2012.05.026.

[18]

R. Hassin and M. Haviv, Equilibrium threshold strategies: the case of queues with priorities, Operations Research, 45 (1997), 966-973. doi: 10.1287/opre.45.6.966.

[19]

R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems," International Series in Operations Research & Management Science, 59, Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4615-0359-0.

[20]

M. Haviv and Y. Kerner, On balking from an empty queue, Queueing Systems, 55 (2007), 239-249. doi: 10.1007/s11134-007-9020-2.

[21]

Q. M. He and E. Jewkes, Flow time in the $M AP$/G/1 queue with customer batching and setup times, Stochastic Models, 11 (1995), 691-711. doi: 10.1080/15326349508807367.

[22]

Y. Kerner, The conditional distribution of the residual service time in the $M_n$/G/1 queue, Stochastic Models, 24 (2008), 364-375. doi: 10.1080/15326340802232210.

[23]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue, Game and Economic Behavior, 71 (2011), 521-526. doi: 10.1016/j.geb.2010.06.002.

[24]

W. Liu, Y. Ma and J. Li, Equilibrium threshold strategies in observable queueing systems under single vacation policy, Applied Mathematical Modelling, 36 (2012), 6186-6202. doi: 10.1016/j.apm.2012.02.003.

[25]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24. doi: 10.2307/1909200.

[26]

S. Stidham, Jr., "Optimal Design of Queueing Systems," CRC Press, Boca Raton, FL, 2009. doi: 10.1201/9781420010008.

[27]

W. Sun, P. Guo and N. Tian, Equilibrium threshold strategies in observable queueing systems with setup/closedown times, Central European Journal of Operational Research, 18 (2010), 241-268. doi: 10.1007/s10100-009-0104-4.

[28]

H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation. Vol. 1. Vacation and Priority Systems. Part I," North-Holland, Amsterdam, 1991.

[29]

N. Tian and Z.G. Zhang, "Vacation Queueing Models. Theory and Applications," International Series in Operations Research & Management Science, 93, Springer, New York, 2006.

[30]

J. Wang and F. Zhang, Equilibrium analysis of the observable queues with balking and delayed repairs, Applied Mathematics and Computation, 218 (2011), 2716-2729. doi: 10.1016/j.amc.2011.08.012.

[31]

F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations, Journal of Industrial and Management Optimization, 8 (2012), 861-875. doi: 10.3934/jimo.2012.8.861.

show all references

References:
[1]

E. Altman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue, in "ISDG2002, Vol. I, II" (St. Petersburg), St. Petersburg State Univ. Inst. Chem., St. Petersburg, (2002), 56-64.

[2]

J. R. Artalejo, A. Economou and M. J. Lopez-Herrero, Analysis of a multiserver queue with setup times, Queueing Systems, 51 (2005), 53-76. doi: 10.1007/s11134-005-1740-6.

[3]

W. Bischof, Analysis of M/G/1-queues with setup times and vacations under six different service disciplines, Queueing Systems, 39 (2001), 265-301. doi: 10.1023/A:1013992708103.

[4]

A. Borthakur and G. Choudhury, A multiserver Poisson queue with a general startup time under $N$-policy, Calcutta Statistical Association Bulletin, 49 (1999), 199-213.

[5]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715. doi: 10.1016/j.ejor.2011.11.043.

[6]

A. Burnetas, Customer equilibrium and optimal strategies in Markovian queues in series, Annals of Operations Research, 208 (2013), 515-529. doi: 10.1007/s10479-011-1010-4.

[7]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times, Queueing Systems, 56 (2007), 213-228. doi: 10.1007/s11134-007-9036-7.

[8]

G. Choudhury, On a batch arrival Poisson queue with a random setup and vacation period, Computers & Operations Research, 25 (1998), 1013-1026. doi: 10.1016/S0305-0548(98)00038-0.

[9]

G. Choudhury, An $M^X$/G/1 queueing system with a setup period and a vacation period, Queueing Systems, 36 (2000), 23-38. doi: 10.1023/A:1011089403694.

[10]

A. Economou and S. Kanta, On balking strategies and pricing for the single server Markovian queue with compartmented waiting space, Queueing Systems, 59 (2008), 237-269. doi: 10.1007/s11134-008-9083-8.

[11]

A. Economou and S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs, Operations Research Letters, 36 (2008), 696-699. doi: 10.1016/j.orl.2008.06.006.

[12]

A. Economou and S. Kanta, Equilibrium customer strategies and social-profit maximization in the single-server constant retrial queue, Naval Research Logistics, 58 (2011), 107-122. doi: 10.1002/nav.20444.

[13]

A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times, Performance Evaluation, 68 (2011), 967-982. doi: 10.1016/j.peva.2011.07.001.

[14]

A. Economou and A. Manou, Equilibrium balking strategies for a clearing queueing system in alternating environment, Annals of Operations Research, 208 (2013), 489-514. doi: 10.1007/s10479-011-1025-x.

[15]

N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes, Econometrica, 43 (1975), 81-92. doi: 10.2307/1913415.

[16]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues, Operations Research, 59 (2011), 986-997. doi: 10.1287/opre.1100.0907.

[17]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers, European Journal of Operational Research, 222 (2012), 278-286. doi: 10.1016/j.ejor.2012.05.026.

[18]

R. Hassin and M. Haviv, Equilibrium threshold strategies: the case of queues with priorities, Operations Research, 45 (1997), 966-973. doi: 10.1287/opre.45.6.966.

[19]

R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems," International Series in Operations Research & Management Science, 59, Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4615-0359-0.

[20]

M. Haviv and Y. Kerner, On balking from an empty queue, Queueing Systems, 55 (2007), 239-249. doi: 10.1007/s11134-007-9020-2.

[21]

Q. M. He and E. Jewkes, Flow time in the $M AP$/G/1 queue with customer batching and setup times, Stochastic Models, 11 (1995), 691-711. doi: 10.1080/15326349508807367.

[22]

Y. Kerner, The conditional distribution of the residual service time in the $M_n$/G/1 queue, Stochastic Models, 24 (2008), 364-375. doi: 10.1080/15326340802232210.

[23]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue, Game and Economic Behavior, 71 (2011), 521-526. doi: 10.1016/j.geb.2010.06.002.

[24]

W. Liu, Y. Ma and J. Li, Equilibrium threshold strategies in observable queueing systems under single vacation policy, Applied Mathematical Modelling, 36 (2012), 6186-6202. doi: 10.1016/j.apm.2012.02.003.

[25]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24. doi: 10.2307/1909200.

[26]

S. Stidham, Jr., "Optimal Design of Queueing Systems," CRC Press, Boca Raton, FL, 2009. doi: 10.1201/9781420010008.

[27]

W. Sun, P. Guo and N. Tian, Equilibrium threshold strategies in observable queueing systems with setup/closedown times, Central European Journal of Operational Research, 18 (2010), 241-268. doi: 10.1007/s10100-009-0104-4.

[28]

H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation. Vol. 1. Vacation and Priority Systems. Part I," North-Holland, Amsterdam, 1991.

[29]

N. Tian and Z.G. Zhang, "Vacation Queueing Models. Theory and Applications," International Series in Operations Research & Management Science, 93, Springer, New York, 2006.

[30]

J. Wang and F. Zhang, Equilibrium analysis of the observable queues with balking and delayed repairs, Applied Mathematics and Computation, 218 (2011), 2716-2729. doi: 10.1016/j.amc.2011.08.012.

[31]

F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations, Journal of Industrial and Management Optimization, 8 (2012), 861-875. doi: 10.3934/jimo.2012.8.861.

[1]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113

[2]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[3]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[4]

Veena Goswami, Gopinath Panda. Customers' joining behavior in an unobservable GI/Geo/m queue. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021059

[5]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[6]

Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial and Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811

[7]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial and Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653

[8]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[9]

Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial and Management Optimization, 2019, 15 (1) : 15-35. doi: 10.3934/jimo.2018030

[10]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial and Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[11]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[12]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[13]

Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial and Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593

[14]

A. Azhagappan, T. Deepa. Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2843-2856. doi: 10.3934/jimo.2019083

[15]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[16]

Veena Goswami, M. L. Chaudhry. Explicit results for the distribution of the number of customers served during a busy period for $M^X/PH/1$ queue. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021168

[17]

Jerim Kim, Bara Kim, Hwa-Sung Kim. G/M/1 type structure of a risk model with general claim sizes in a Markovian environment. Journal of Industrial and Management Optimization, 2012, 8 (4) : 909-924. doi: 10.3934/jimo.2012.8.909

[18]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial and Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[19]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial and Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[20]

Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial and Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]