-
Previous Article
A non-monotone retrospective trust-region method for unconstrained optimization
- JIMO Home
- This Issue
-
Next Article
On the strong convergence of a modified Hestenes-Stiefel method for nonconvex optimization
Equilibrium joining probabilities in observable queues with general service and setup times
1. | Department of Mathematics, Beijing Jiaotong University, 100044 Beijing |
2. | Department of Mathematics, University of Northern Iowa, Cedar Falls, IA 50614-0506 |
References:
[1] |
E. Altman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue,, in, (2002), 56.
|
[2] |
J. R. Artalejo, A. Economou and M. J. Lopez-Herrero, Analysis of a multiserver queue with setup times,, Queueing Systems, 51 (2005), 53.
doi: 10.1007/s11134-005-1740-6. |
[3] |
W. Bischof, Analysis of M/G/1-queues with setup times and vacations under six different service disciplines,, Queueing Systems, 39 (2001), 265.
doi: 10.1023/A:1013992708103. |
[4] |
A. Borthakur and G. Choudhury, A multiserver Poisson queue with a general startup time under $N$-policy,, Calcutta Statistical Association Bulletin, 49 (1999), 199.
|
[5] |
O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes,, European Journal of Operational Research, 218 (2012), 708.
doi: 10.1016/j.ejor.2011.11.043. |
[6] |
A. Burnetas, Customer equilibrium and optimal strategies in Markovian queues in series,, Annals of Operations Research, 208 (2013), 515.
doi: 10.1007/s10479-011-1010-4. |
[7] |
A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times,, Queueing Systems, 56 (2007), 213.
doi: 10.1007/s11134-007-9036-7. |
[8] |
G. Choudhury, On a batch arrival Poisson queue with a random setup and vacation period,, Computers $&$ Operations Research, 25 (1998), 1013.
doi: 10.1016/S0305-0548(98)00038-0. |
[9] |
G. Choudhury, An $M^X$/G/1 queueing system with a setup period and a vacation period,, Queueing Systems, 36 (2000), 23.
doi: 10.1023/A:1011089403694. |
[10] |
A. Economou and S. Kanta, On balking strategies and pricing for the single server Markovian queue with compartmented waiting space,, Queueing Systems, 59 (2008), 237.
doi: 10.1007/s11134-008-9083-8. |
[11] |
A. Economou and S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.
doi: 10.1016/j.orl.2008.06.006. |
[12] |
A. Economou and S. Kanta, Equilibrium customer strategies and social-profit maximization in the single-server constant retrial queue,, Naval Research Logistics, 58 (2011), 107.
doi: 10.1002/nav.20444. |
[13] |
A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.
doi: 10.1016/j.peva.2011.07.001. |
[14] |
A. Economou and A. Manou, Equilibrium balking strategies for a clearing queueing system in alternating environment,, Annals of Operations Research, 208 (2013), 489.
doi: 10.1007/s10479-011-1025-x. |
[15] |
N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.
doi: 10.2307/1913415. |
[16] |
P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.
doi: 10.1287/opre.1100.0907. |
[17] |
P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers,, European Journal of Operational Research, 222 (2012), 278.
doi: 10.1016/j.ejor.2012.05.026. |
[18] |
R. Hassin and M. Haviv, Equilibrium threshold strategies: the case of queues with priorities,, Operations Research, 45 (1997), 966.
doi: 10.1287/opre.45.6.966. |
[19] |
R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems,", International Series in Operations Research & Management Science, 59 (2003).
doi: 10.1007/978-1-4615-0359-0. |
[20] |
M. Haviv and Y. Kerner, On balking from an empty queue,, Queueing Systems, 55 (2007), 239.
doi: 10.1007/s11134-007-9020-2. |
[21] |
Q. M. He and E. Jewkes, Flow time in the $M AP$/G/1 queue with customer batching and setup times,, Stochastic Models, 11 (1995), 691.
doi: 10.1080/15326349508807367. |
[22] |
Y. Kerner, The conditional distribution of the residual service time in the $M_n$/G/1 queue,, Stochastic Models, 24 (2008), 364.
doi: 10.1080/15326340802232210. |
[23] |
Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue,, Game and Economic Behavior, 71 (2011), 521.
doi: 10.1016/j.geb.2010.06.002. |
[24] |
W. Liu, Y. Ma and J. Li, Equilibrium threshold strategies in observable queueing systems under single vacation policy,, Applied Mathematical Modelling, 36 (2012), 6186.
doi: 10.1016/j.apm.2012.02.003. |
[25] |
P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15.
doi: 10.2307/1909200. |
[26] |
S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009).
doi: 10.1201/9781420010008. |
[27] |
W. Sun, P. Guo and N. Tian, Equilibrium threshold strategies in observable queueing systems with setup/closedown times,, Central European Journal of Operational Research, 18 (2010), 241.
doi: 10.1007/s10100-009-0104-4. |
[28] |
H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation. Vol. 1. Vacation and Priority Systems. Part I,", North-Holland, (1991).
|
[29] |
N. Tian and Z.G. Zhang, "Vacation Queueing Models. Theory and Applications,", International Series in Operations Research & Management Science, 93 (2006).
|
[30] |
J. Wang and F. Zhang, Equilibrium analysis of the observable queues with balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.
doi: 10.1016/j.amc.2011.08.012. |
[31] |
F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations,, Journal of Industrial and Management Optimization, 8 (2012), 861.
doi: 10.3934/jimo.2012.8.861. |
show all references
References:
[1] |
E. Altman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue,, in, (2002), 56.
|
[2] |
J. R. Artalejo, A. Economou and M. J. Lopez-Herrero, Analysis of a multiserver queue with setup times,, Queueing Systems, 51 (2005), 53.
doi: 10.1007/s11134-005-1740-6. |
[3] |
W. Bischof, Analysis of M/G/1-queues with setup times and vacations under six different service disciplines,, Queueing Systems, 39 (2001), 265.
doi: 10.1023/A:1013992708103. |
[4] |
A. Borthakur and G. Choudhury, A multiserver Poisson queue with a general startup time under $N$-policy,, Calcutta Statistical Association Bulletin, 49 (1999), 199.
|
[5] |
O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes,, European Journal of Operational Research, 218 (2012), 708.
doi: 10.1016/j.ejor.2011.11.043. |
[6] |
A. Burnetas, Customer equilibrium and optimal strategies in Markovian queues in series,, Annals of Operations Research, 208 (2013), 515.
doi: 10.1007/s10479-011-1010-4. |
[7] |
A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times,, Queueing Systems, 56 (2007), 213.
doi: 10.1007/s11134-007-9036-7. |
[8] |
G. Choudhury, On a batch arrival Poisson queue with a random setup and vacation period,, Computers $&$ Operations Research, 25 (1998), 1013.
doi: 10.1016/S0305-0548(98)00038-0. |
[9] |
G. Choudhury, An $M^X$/G/1 queueing system with a setup period and a vacation period,, Queueing Systems, 36 (2000), 23.
doi: 10.1023/A:1011089403694. |
[10] |
A. Economou and S. Kanta, On balking strategies and pricing for the single server Markovian queue with compartmented waiting space,, Queueing Systems, 59 (2008), 237.
doi: 10.1007/s11134-008-9083-8. |
[11] |
A. Economou and S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.
doi: 10.1016/j.orl.2008.06.006. |
[12] |
A. Economou and S. Kanta, Equilibrium customer strategies and social-profit maximization in the single-server constant retrial queue,, Naval Research Logistics, 58 (2011), 107.
doi: 10.1002/nav.20444. |
[13] |
A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.
doi: 10.1016/j.peva.2011.07.001. |
[14] |
A. Economou and A. Manou, Equilibrium balking strategies for a clearing queueing system in alternating environment,, Annals of Operations Research, 208 (2013), 489.
doi: 10.1007/s10479-011-1025-x. |
[15] |
N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.
doi: 10.2307/1913415. |
[16] |
P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.
doi: 10.1287/opre.1100.0907. |
[17] |
P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers,, European Journal of Operational Research, 222 (2012), 278.
doi: 10.1016/j.ejor.2012.05.026. |
[18] |
R. Hassin and M. Haviv, Equilibrium threshold strategies: the case of queues with priorities,, Operations Research, 45 (1997), 966.
doi: 10.1287/opre.45.6.966. |
[19] |
R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems,", International Series in Operations Research & Management Science, 59 (2003).
doi: 10.1007/978-1-4615-0359-0. |
[20] |
M. Haviv and Y. Kerner, On balking from an empty queue,, Queueing Systems, 55 (2007), 239.
doi: 10.1007/s11134-007-9020-2. |
[21] |
Q. M. He and E. Jewkes, Flow time in the $M AP$/G/1 queue with customer batching and setup times,, Stochastic Models, 11 (1995), 691.
doi: 10.1080/15326349508807367. |
[22] |
Y. Kerner, The conditional distribution of the residual service time in the $M_n$/G/1 queue,, Stochastic Models, 24 (2008), 364.
doi: 10.1080/15326340802232210. |
[23] |
Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue,, Game and Economic Behavior, 71 (2011), 521.
doi: 10.1016/j.geb.2010.06.002. |
[24] |
W. Liu, Y. Ma and J. Li, Equilibrium threshold strategies in observable queueing systems under single vacation policy,, Applied Mathematical Modelling, 36 (2012), 6186.
doi: 10.1016/j.apm.2012.02.003. |
[25] |
P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15.
doi: 10.2307/1909200. |
[26] |
S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009).
doi: 10.1201/9781420010008. |
[27] |
W. Sun, P. Guo and N. Tian, Equilibrium threshold strategies in observable queueing systems with setup/closedown times,, Central European Journal of Operational Research, 18 (2010), 241.
doi: 10.1007/s10100-009-0104-4. |
[28] |
H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation. Vol. 1. Vacation and Priority Systems. Part I,", North-Holland, (1991).
|
[29] |
N. Tian and Z.G. Zhang, "Vacation Queueing Models. Theory and Applications,", International Series in Operations Research & Management Science, 93 (2006).
|
[30] |
J. Wang and F. Zhang, Equilibrium analysis of the observable queues with balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.
doi: 10.1016/j.amc.2011.08.012. |
[31] |
F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations,, Journal of Industrial and Management Optimization, 8 (2012), 861.
doi: 10.3934/jimo.2012.8.861. |
[1] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[2] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[3] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[4] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[5] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[6] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[7] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[8] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[9] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[10] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[11] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[12] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[13] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[14] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[15] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[16] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[17] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[18] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[19] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[20] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]