-
Previous Article
Linear programming technique for solving interval-valued constraint matrix games
- JIMO Home
- This Issue
-
Next Article
Bounds for the greatest eigenvalue of positive tensors
On a risk model with randomized dividend-decision times
1. | College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China |
References:
[1] |
H. Albrecher, E. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: Dividends,, Astin Bulletin, 41 (2011), 645.
|
[2] |
H. Albrecher, E. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: The discounted penalty function,, Scandinavian Actuarial Journal, 2013 (2013), 424.
doi: 10.1080/03461238.2011.624686. |
[3] |
B. Avanzi, E. C. K. Cheung, B. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency,, Insurance: Mathematics and Economics, 52 (2013), 98.
doi: 10.1016/j.insmatheco.2012.10.008. |
[4] |
B. De Finetti, Su un impostazione alternativa della teoria collectiva del rischio,, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433. Google Scholar |
[5] |
H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, North American Actuarial Journal, 2 (1998), 48.
doi: 10.1080/10920277.1998.10595671. |
[6] |
H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion,, North American Actuarial Journal, 8 (2004), 1.
doi: 10.1080/10920277.2004.10596125. |
[7] |
A. E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications,, Springer-Verlag, (2006).
|
[8] |
S. Li, The distribution of the dividend payments in the compound poisson risk model perturbed by diffusion,, Scandinavian Actuarial Journal, 2006 (2006), 73.
doi: 10.1080/03461230600589237. |
[9] |
S. Li and J. Garrido, On ruin for the Erlang(n) risk model,, Insurance: Mathematics and Economics, 34 (2004), 391.
doi: 10.1016/j.insmatheco.2004.01.002. |
[10] |
S. Li and J. Garrido, On a class of renewal risk model with a constant dividend barrier,, Insurance: Mathematics and Economics, 35 (2004), 691.
doi: 10.1016/j.insmatheco.2004.08.004. |
[11] |
X. S. Lin, G. E. Willmot and S. Drekic, The classical risk model with a constant dividend barrier: Analysis of the Gerber-Shiu discounted penalty function,, Insurance: Mathematics and Economics, 33 (2003), 551.
doi: 10.1016/j.insmatheco.2003.08.004. |
[12] |
X. S. Lin and K. P. Pavlova, The compound Poisson risk model with a threshold dividend strategy,, Insurance: Mathematics and Economics, 38 (2006), 57.
doi: 10.1016/j.insmatheco.2005.08.001. |
[13] |
X. S. Lin and K. P. Sendova, The compound Poisson risk model with multiple thresholds,, Insurance: Mathematics and Economics, 42 (2008), 617.
doi: 10.1016/j.insmatheco.2007.06.008. |
[14] |
C. C. L. Tsai and G. E. Willmot, A generalized defective renewal equation for the surplus process perturbed by diffusion,, Insurance: Mathematics and Economics, 30 (2002), 51.
doi: 10.1016/S0167-6687(01)00096-8. |
[15] |
Z. Zhang and X. Wu, Dividend payments in the Brownian risk model with randomized decision times,, Acta Mathematicae Applicatae Sinica-English Series, (2013). Google Scholar |
show all references
References:
[1] |
H. Albrecher, E. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: Dividends,, Astin Bulletin, 41 (2011), 645.
|
[2] |
H. Albrecher, E. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: The discounted penalty function,, Scandinavian Actuarial Journal, 2013 (2013), 424.
doi: 10.1080/03461238.2011.624686. |
[3] |
B. Avanzi, E. C. K. Cheung, B. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency,, Insurance: Mathematics and Economics, 52 (2013), 98.
doi: 10.1016/j.insmatheco.2012.10.008. |
[4] |
B. De Finetti, Su un impostazione alternativa della teoria collectiva del rischio,, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433. Google Scholar |
[5] |
H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, North American Actuarial Journal, 2 (1998), 48.
doi: 10.1080/10920277.1998.10595671. |
[6] |
H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion,, North American Actuarial Journal, 8 (2004), 1.
doi: 10.1080/10920277.2004.10596125. |
[7] |
A. E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications,, Springer-Verlag, (2006).
|
[8] |
S. Li, The distribution of the dividend payments in the compound poisson risk model perturbed by diffusion,, Scandinavian Actuarial Journal, 2006 (2006), 73.
doi: 10.1080/03461230600589237. |
[9] |
S. Li and J. Garrido, On ruin for the Erlang(n) risk model,, Insurance: Mathematics and Economics, 34 (2004), 391.
doi: 10.1016/j.insmatheco.2004.01.002. |
[10] |
S. Li and J. Garrido, On a class of renewal risk model with a constant dividend barrier,, Insurance: Mathematics and Economics, 35 (2004), 691.
doi: 10.1016/j.insmatheco.2004.08.004. |
[11] |
X. S. Lin, G. E. Willmot and S. Drekic, The classical risk model with a constant dividend barrier: Analysis of the Gerber-Shiu discounted penalty function,, Insurance: Mathematics and Economics, 33 (2003), 551.
doi: 10.1016/j.insmatheco.2003.08.004. |
[12] |
X. S. Lin and K. P. Pavlova, The compound Poisson risk model with a threshold dividend strategy,, Insurance: Mathematics and Economics, 38 (2006), 57.
doi: 10.1016/j.insmatheco.2005.08.001. |
[13] |
X. S. Lin and K. P. Sendova, The compound Poisson risk model with multiple thresholds,, Insurance: Mathematics and Economics, 42 (2008), 617.
doi: 10.1016/j.insmatheco.2007.06.008. |
[14] |
C. C. L. Tsai and G. E. Willmot, A generalized defective renewal equation for the surplus process perturbed by diffusion,, Insurance: Mathematics and Economics, 30 (2002), 51.
doi: 10.1016/S0167-6687(01)00096-8. |
[15] |
Z. Zhang and X. Wu, Dividend payments in the Brownian risk model with randomized decision times,, Acta Mathematicae Applicatae Sinica-English Series, (2013). Google Scholar |
[1] |
Yanbin Tang, Ming Wang. A remark on exponential stability of time-delayed Burgers equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 219-225. doi: 10.3934/dcdsb.2009.12.219 |
[2] |
Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693 |
[3] |
Y. T. Li, R. Wong. Integral and series representations of the dirac delta function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 229-247. doi: 10.3934/cpaa.2008.7.229 |
[4] |
Bai-Ni Guo, Feng Qi. Properties and applications of a function involving exponential functions. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1231-1249. doi: 10.3934/cpaa.2009.8.1231 |
[5] |
Emad Attia, Marek Bodnar, Urszula Foryś. Angiogenesis model with Erlang distributed delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 1-15. doi: 10.3934/mbe.2017001 |
[6] |
Wei Zhong, Yongxia Zhao, Ping Chen. Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020087 |
[7] |
Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51 |
[8] |
Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028 |
[9] |
Carlos Conca, Luis Friz, Jaime H. Ortega. Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks & Heterogeneous Media, 2008, 3 (3) : 555-566. doi: 10.3934/nhm.2008.3.555 |
[10] |
Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347 |
[11] |
Jeremy Levesley, Xinping Sun, Fahd Jarad, Alexander Kushpel. Interpolation of exponential-type functions on a uniform grid by shifts of a basis function. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020403 |
[12] |
Josef Diblík, Zdeněk Svoboda. Asymptotic properties of delayed matrix exponential functions via Lambert function. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 123-144. doi: 10.3934/dcdsb.2018008 |
[13] |
Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1 |
[14] |
Sergiu Aizicovici, Yimin Ding, N. S. Papageorgiou. Time dependent Volterra integral inclusions in Banach spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 53-63. doi: 10.3934/dcds.1996.2.53 |
[15] |
Minvydas Ragulskis, Zenonas Navickas. Hash function construction based on time average moiré. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 1007-1020. doi: 10.3934/dcdsb.2007.8.1007 |
[16] |
Kei Matsuura, Mitsuharu Otani. Exponential attractors for a quasilinear parabolic equation. Conference Publications, 2007, 2007 (Special) : 713-720. doi: 10.3934/proc.2007.2007.713 |
[17] |
Bin Dan, Huali Gao, Yang Zhang, Ru Liu, Songxuan Ma. Integrated order acceptance and scheduling decision making in product service supply chain with hard time windows constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 165-182. doi: 10.3934/jimo.2017041 |
[18] |
Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111 |
[19] |
Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure & Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036 |
[20] |
Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]