October  2014, 10(4): 1109-1127. doi: 10.3934/jimo.2014.10.1109

CVaR proxies for minimizing scenario-based Value-at-Risk

1. 

Quantitative Research, Risk Analytics, Business Analytics, IBM, 185 Spadina Avenue, Toronto, ON M5T2C6, Canada, Canada

Received  September 2012 Revised  October 2013 Published  February 2014

Minimizing VaR, as estimated from a set of scenarios, is a difficult integer programming problem. Solving the problem to optimality may demand using only a small number of scenarios, which leads to poor out-of-sample performance. A simple alternative is to minimize CVaR for several different quantile levels and then to select the optimized portfolio with the best out-of-sample VaR. We show that this approach is both practical and effective, outperforming integer programming and an existing VaR minimization heuristic. The CVaR quantile level acts as a regularization parameter and, therefore, its ideal value depends on the number of scenarios and other problem characteristics.
Citation: Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109
References:
[1]

C. Acerbi and D. Tasche, Expected Shortfall: A natural coherent alternative to Value at Risk, Economic Notes, 31 (2002), 379-388. doi: 10.1111/1468-0300.00091.

[2]

C. Acerbi and D. Tasche, On the coherence of expected shortfall, Journal of Banking & Finance, 26 (2002), 1487-1503. doi: 10.1016/S0378-4266(02)00283-2.

[3]

B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics, SIAM Publishers, Philadelphia, PA, 2008. doi: 10.1137/1.9780898719062.

[4]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228. doi: 10.1111/1467-9965.00068.

[5]

V. Brazauskas, B. L. Jones, M. L. Puri and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view, Journal of Statistical Planning and Inference, 138 (2008), 3590-3604. doi: 10.1016/j.jspi.2005.11.011.

[6]

J. Daníelsson, B. N. Jorgensen, G. Samorodnitsky, M. Sarma and C. G. de Vries, Subadditivity re-examined: The case for Value-at-Risk, preprint, London School of Economics, 2005.

[7]

V. DeMiguel, L. Garlappi, F. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812. doi: 10.1287/mnsc.1080.0986.

[8]

K. Høyland, M. Kaut and S. W. Wallace, A heuristic for moment-matching scenario generation, Computational Optimization and Applications, 24 (2003), 169-185. doi: 10.1023/A:1021853807313.

[9]

N. Larsen, H. Mausser and S. Uryasev, Algorithms for optimization of Value-at-Risk, in Financial Engineering, E-commerce and Supply Chain (eds. P. Pardalos and V. K. Tsitsiringos), Kluwer Academic Publishers, Norwell, MA, (2002), 19-46. doi: 10.1007/978-1-4757-5226-7_2.

[10]

J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints, SIAM Journal on Optimization, 19 (2008), 674-699. doi: 10.1137/070702928.

[11]

H. Mausser and O. Romanko, Bias, exploitation and proxies in scenario-based risk minimization, Optimization, 61 (2012), 1191-1219. doi: 10.1080/02331934.2012.684795.

[12]

H. Mausser and D. Rosen, Efficient risk/return frontiers for credit risk, Journal of Risk Finance, 2 (2000), 66-78. doi: 10.1108/eb022948.

[13]

K. Natarajan, D. Pachamanova and M. Sim, Incorporating asymmetric distribution information in robust value-at-risk optimization, Management Science, 54 (2008), 573-585. doi: 10.1287/mnsc.1070.0769.

[14]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2006), 969-996. doi: 10.1137/050622328.

[15]

B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Computational study of a chance constrained portfolio selection problem, Optimization Online, 2008. Available from: http://www.optimization-online.org/DB_HTML/2008/02/1899.html.

[16]

B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming: Theory and applications, Journal of Optimization Theory and Applications, 142 (2009), 399-416. doi: 10.1007/s10957-009-9523-6.

[17]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.

[18]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions, Journal of Banking & Finance, 26 (2002), 1443-1471. doi: 10.1016/S0378-4266(02)00271-6.

[19]

D. Wuertz and H. Katzgraber, Precise Finite-Sample Quantiles of the Jarque-Bera Adjusted Lagrange Multiplier Test, MPRA Paper No. 19155, University of Munich, 2009. Available from: http://mpra.ub.uni-muenchen.de/19155/.

show all references

References:
[1]

C. Acerbi and D. Tasche, Expected Shortfall: A natural coherent alternative to Value at Risk, Economic Notes, 31 (2002), 379-388. doi: 10.1111/1468-0300.00091.

[2]

C. Acerbi and D. Tasche, On the coherence of expected shortfall, Journal of Banking & Finance, 26 (2002), 1487-1503. doi: 10.1016/S0378-4266(02)00283-2.

[3]

B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics, SIAM Publishers, Philadelphia, PA, 2008. doi: 10.1137/1.9780898719062.

[4]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228. doi: 10.1111/1467-9965.00068.

[5]

V. Brazauskas, B. L. Jones, M. L. Puri and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view, Journal of Statistical Planning and Inference, 138 (2008), 3590-3604. doi: 10.1016/j.jspi.2005.11.011.

[6]

J. Daníelsson, B. N. Jorgensen, G. Samorodnitsky, M. Sarma and C. G. de Vries, Subadditivity re-examined: The case for Value-at-Risk, preprint, London School of Economics, 2005.

[7]

V. DeMiguel, L. Garlappi, F. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812. doi: 10.1287/mnsc.1080.0986.

[8]

K. Høyland, M. Kaut and S. W. Wallace, A heuristic for moment-matching scenario generation, Computational Optimization and Applications, 24 (2003), 169-185. doi: 10.1023/A:1021853807313.

[9]

N. Larsen, H. Mausser and S. Uryasev, Algorithms for optimization of Value-at-Risk, in Financial Engineering, E-commerce and Supply Chain (eds. P. Pardalos and V. K. Tsitsiringos), Kluwer Academic Publishers, Norwell, MA, (2002), 19-46. doi: 10.1007/978-1-4757-5226-7_2.

[10]

J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints, SIAM Journal on Optimization, 19 (2008), 674-699. doi: 10.1137/070702928.

[11]

H. Mausser and O. Romanko, Bias, exploitation and proxies in scenario-based risk minimization, Optimization, 61 (2012), 1191-1219. doi: 10.1080/02331934.2012.684795.

[12]

H. Mausser and D. Rosen, Efficient risk/return frontiers for credit risk, Journal of Risk Finance, 2 (2000), 66-78. doi: 10.1108/eb022948.

[13]

K. Natarajan, D. Pachamanova and M. Sim, Incorporating asymmetric distribution information in robust value-at-risk optimization, Management Science, 54 (2008), 573-585. doi: 10.1287/mnsc.1070.0769.

[14]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2006), 969-996. doi: 10.1137/050622328.

[15]

B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Computational study of a chance constrained portfolio selection problem, Optimization Online, 2008. Available from: http://www.optimization-online.org/DB_HTML/2008/02/1899.html.

[16]

B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming: Theory and applications, Journal of Optimization Theory and Applications, 142 (2009), 399-416. doi: 10.1007/s10957-009-9523-6.

[17]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.

[18]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions, Journal of Banking & Finance, 26 (2002), 1443-1471. doi: 10.1016/S0378-4266(02)00271-6.

[19]

D. Wuertz and H. Katzgraber, Precise Finite-Sample Quantiles of the Jarque-Bera Adjusted Lagrange Multiplier Test, MPRA Paper No. 19155, University of Munich, 2009. Available from: http://mpra.ub.uni-muenchen.de/19155/.

[1]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[2]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[3]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[4]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050

[5]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial and Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[6]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1635-1654. doi: 10.3934/jimo.2019021

[7]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial and Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[8]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[9]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[10]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013

[11]

Engel John C Dela Vega, Robert J Elliott. Conditional coherent risk measures and regime-switching conic pricing. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 267-300. doi: 10.3934/puqr.2021014

[12]

Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105

[13]

Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275

[14]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[15]

Jesús Fabián López Pérez, Tahir Ekin, Jesus A. Jimenez, Francis A. Méndez Mediavilla. Risk-balanced territory design optimization for a Micro finance institution. Journal of Industrial and Management Optimization, 2020, 16 (2) : 741-758. doi: 10.3934/jimo.2018176

[16]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial and Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[17]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial and Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[18]

Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in ill-posed problems - properties and limitations. Inverse Problems and Imaging, 2018, 12 (5) : 1121-1155. doi: 10.3934/ipi.2018047

[19]

Hui Huang, Eldad Haber, Lior Horesh. Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint. Inverse Problems and Imaging, 2012, 6 (3) : 447-464. doi: 10.3934/ipi.2012.6.447

[20]

Thorsten Hohage, Mihaela Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Problems and Imaging, 2008, 2 (2) : 271-290. doi: 10.3934/ipi.2008.2.271

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]