-
Previous Article
Dynamic optimization models in finance: Some extensions to the framework, models, and computation
- JIMO Home
- This Issue
-
Next Article
A barrier function method for generalized Nash equilibrium problems
CVaR proxies for minimizing scenario-based Value-at-Risk
1. | Quantitative Research, Risk Analytics, Business Analytics, IBM, 185 Spadina Avenue, Toronto, ON M5T2C6, Canada, Canada |
References:
[1] |
C. Acerbi and D. Tasche, Expected Shortfall: A natural coherent alternative to Value at Risk,, Economic Notes, 31 (2002), 379.
doi: 10.1111/1468-0300.00091. |
[2] |
C. Acerbi and D. Tasche, On the coherence of expected shortfall,, Journal of Banking & Finance, 26 (2002), 1487.
doi: 10.1016/S0378-4266(02)00283-2. |
[3] |
B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics,, SIAM Publishers, (2008).
doi: 10.1137/1.9780898719062. |
[4] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.
doi: 10.1111/1467-9965.00068. |
[5] |
V. Brazauskas, B. L. Jones, M. L. Puri and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view,, Journal of Statistical Planning and Inference, 138 (2008), 3590.
doi: 10.1016/j.jspi.2005.11.011. |
[6] |
J. Daníelsson, B. N. Jorgensen, G. Samorodnitsky, M. Sarma and C. G. de Vries, Subadditivity re-examined: The case for Value-at-Risk,, preprint, (2005). Google Scholar |
[7] |
V. DeMiguel, L. Garlappi, F. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms,, Management Science, 55 (2009), 798.
doi: 10.1287/mnsc.1080.0986. |
[8] |
K. Høyland, M. Kaut and S. W. Wallace, A heuristic for moment-matching scenario generation,, Computational Optimization and Applications, 24 (2003), 169.
doi: 10.1023/A:1021853807313. |
[9] |
N. Larsen, H. Mausser and S. Uryasev, Algorithms for optimization of Value-at-Risk,, in Financial Engineering, (2002), 19.
doi: 10.1007/978-1-4757-5226-7_2. |
[10] |
J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints,, SIAM Journal on Optimization, 19 (2008), 674.
doi: 10.1137/070702928. |
[11] |
H. Mausser and O. Romanko, Bias, exploitation and proxies in scenario-based risk minimization,, Optimization, 61 (2012), 1191.
doi: 10.1080/02331934.2012.684795. |
[12] |
H. Mausser and D. Rosen, Efficient risk/return frontiers for credit risk,, Journal of Risk Finance, 2 (2000), 66.
doi: 10.1108/eb022948. |
[13] |
K. Natarajan, D. Pachamanova and M. Sim, Incorporating asymmetric distribution information in robust value-at-risk optimization,, Management Science, 54 (2008), 573.
doi: 10.1287/mnsc.1070.0769. |
[14] |
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM Journal on Optimization, 17 (2006), 969.
doi: 10.1137/050622328. |
[15] |
B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Computational study of a chance constrained portfolio selection problem,, Optimization Online, (2008). Google Scholar |
[16] |
B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming: Theory and applications,, Journal of Optimization Theory and Applications, 142 (2009), 399.
doi: 10.1007/s10957-009-9523-6. |
[17] |
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21. Google Scholar |
[18] |
R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions,, Journal of Banking & Finance, 26 (2002), 1443.
doi: 10.1016/S0378-4266(02)00271-6. |
[19] |
D. Wuertz and H. Katzgraber, Precise Finite-Sample Quantiles of the Jarque-Bera Adjusted Lagrange Multiplier Test,, MPRA Paper No. 19155, (1915). Google Scholar |
show all references
References:
[1] |
C. Acerbi and D. Tasche, Expected Shortfall: A natural coherent alternative to Value at Risk,, Economic Notes, 31 (2002), 379.
doi: 10.1111/1468-0300.00091. |
[2] |
C. Acerbi and D. Tasche, On the coherence of expected shortfall,, Journal of Banking & Finance, 26 (2002), 1487.
doi: 10.1016/S0378-4266(02)00283-2. |
[3] |
B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics,, SIAM Publishers, (2008).
doi: 10.1137/1.9780898719062. |
[4] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.
doi: 10.1111/1467-9965.00068. |
[5] |
V. Brazauskas, B. L. Jones, M. L. Puri and R. Zitikis, Estimating conditional tail expectation with actuarial applications in view,, Journal of Statistical Planning and Inference, 138 (2008), 3590.
doi: 10.1016/j.jspi.2005.11.011. |
[6] |
J. Daníelsson, B. N. Jorgensen, G. Samorodnitsky, M. Sarma and C. G. de Vries, Subadditivity re-examined: The case for Value-at-Risk,, preprint, (2005). Google Scholar |
[7] |
V. DeMiguel, L. Garlappi, F. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms,, Management Science, 55 (2009), 798.
doi: 10.1287/mnsc.1080.0986. |
[8] |
K. Høyland, M. Kaut and S. W. Wallace, A heuristic for moment-matching scenario generation,, Computational Optimization and Applications, 24 (2003), 169.
doi: 10.1023/A:1021853807313. |
[9] |
N. Larsen, H. Mausser and S. Uryasev, Algorithms for optimization of Value-at-Risk,, in Financial Engineering, (2002), 19.
doi: 10.1007/978-1-4757-5226-7_2. |
[10] |
J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints,, SIAM Journal on Optimization, 19 (2008), 674.
doi: 10.1137/070702928. |
[11] |
H. Mausser and O. Romanko, Bias, exploitation and proxies in scenario-based risk minimization,, Optimization, 61 (2012), 1191.
doi: 10.1080/02331934.2012.684795. |
[12] |
H. Mausser and D. Rosen, Efficient risk/return frontiers for credit risk,, Journal of Risk Finance, 2 (2000), 66.
doi: 10.1108/eb022948. |
[13] |
K. Natarajan, D. Pachamanova and M. Sim, Incorporating asymmetric distribution information in robust value-at-risk optimization,, Management Science, 54 (2008), 573.
doi: 10.1287/mnsc.1070.0769. |
[14] |
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs,, SIAM Journal on Optimization, 17 (2006), 969.
doi: 10.1137/050622328. |
[15] |
B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Computational study of a chance constrained portfolio selection problem,, Optimization Online, (2008). Google Scholar |
[16] |
B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming: Theory and applications,, Journal of Optimization Theory and Applications, 142 (2009), 399.
doi: 10.1007/s10957-009-9523-6. |
[17] |
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21. Google Scholar |
[18] |
R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions,, Journal of Banking & Finance, 26 (2002), 1443.
doi: 10.1016/S0378-4266(02)00271-6. |
[19] |
D. Wuertz and H. Katzgraber, Precise Finite-Sample Quantiles of the Jarque-Bera Adjusted Lagrange Multiplier Test,, MPRA Paper No. 19155, (1915). Google Scholar |
[1] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[2] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[3] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[4] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]