October  2014, 10(4): 1129-1146. doi: 10.3934/jimo.2014.10.1129

Dynamic optimization models in finance: Some extensions to the framework, models, and computation

1. 

Department of Mathematics & Statistics, University of Melbourne, Victoria 3010, Australia

2. 

Victoria University, P.O. Box 14428, Melbourne, Vic. 6001, Australia

Received  December 2012 Revised  January 2014 Published  February 2014

Both mathematical characteristics and computational aspects of dynamic optimization in finance have potential for extensions. Various proposed extensions are presented in this paper for dynamic optimization modelling in finance, adapted from developments in other areas of economics and mathematics. They show the need and potential for further areas of study and extensions in financial modelling. The extensions discussed and made concern (a) incorporation of the elements of a dynamic optimization model, (b) an improved model including physical capital, (c) some computational experiments. These extensions make dynamic financial optimisation relatively more organized, coherent and coordinated. These extensions are relevant for applications of financial models to academic and practical exercises. This paper reports initial efforts in providing some useful extensions; further work is necessary to complete the research agenda.
Citation: Bruce D. Craven, Sardar M. N. Islam. Dynamic optimization models in finance: Some extensions to the framework, models, and computation. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1129-1146. doi: 10.3934/jimo.2014.10.1129
References:
[1]

P. Brandimarte, Numerical Methods in Finance: A MATLAB-based introduction,, Second edition. Statistics in Practice. Wiley-Interscience [John Wiley & Sons], (2006).  doi: 10.1002/0470080493.  Google Scholar

[2]

W. Brock, Sensitivity of optimal growth paths with respect to a change in target stocks,, Zeitchrift für National Ökonomie, 1 (1971), 73.   Google Scholar

[3]

B. D. Craven, Convergence of discrete approximations for constrained minimizatiion,, Journal of the Australian Mathematical Society, 36 (1994), 50.  doi: 10.1017/S0334270000010237.  Google Scholar

[4]

B. D. Craven, Control and Optimization,, Chapman & Hall, (1995).   Google Scholar

[5]

B. D. Craven, Optimal control and invexity,, Computers and Mathematics with Applications, 35 (1998), 17.  doi: 10.1016/S0898-1221(98)00002-9.  Google Scholar

[6]

B. D. Craven, Optimal control of an economic model with a small stochastic term,, Pacific Journal of Optimization, 1 (2005), 233.   Google Scholar

[7]

B. D. Craven, K. de Haas and J. Wettenhall, Computing optimal control,, Dynamics of Continuous, 4 (1988), 601.   Google Scholar

[8]

B. D. Craven and S. M. N. Islam, Computing optimal control on MATLAB: The scom package and economic growth models,, in Optimisation and Related Topics, 47 (1999), 61.   Google Scholar

[9]

B. D. Craven and S. M. N. Islam, Optimization in Economics and Finance,, Springer, (2005).   Google Scholar

[10]

K. Cuthbertson, Quantitative Financial Economics: Stocks, Bonds, and Foreign Exchange,, John Wiley, (1996).   Google Scholar

[11]

B. Davis and D. Elzinga, The solution of an optimal control problem in financial modeling,, Operations Research, 19 (1971), 1419.  doi: 10.1287/opre.19.6.1419.  Google Scholar

[12]

W. Diewert, Generalized Concavity and Economics,, in Generalized Concavity in Optimization and Economics, (1981).   Google Scholar

[13]

P. Dutta, On specifying the parameters of a development plan,, in Capital, (1993), 75.   Google Scholar

[14]

K. Fox, J. K. Sengupta and E. Thorbecke, The Theory of Quantitative Economic Policy with Applications to Economic Growth,, Stabilization and Planning, (1973).   Google Scholar

[15]

C. Goh and K. L. Teo, MISER: A FORTRAN program for solving optimal control problems,, Advances in Engineering Software, 10 (1988), 90.  doi: 10.1016/0141-1195(88)90005-8.  Google Scholar

[16]

C. Gourieroux and J. Janiak, Financial Econometrics,, Princeton University Press, (2001).  doi: 10.7202/010560ar.  Google Scholar

[17]

N. Hakansson, Optimal investment and consumption strategies under risk for a class of utility functions,, Econometrica, 38 (1970), 587.  doi: 10.2307/1912196.  Google Scholar

[18]

G. Heal, Valuing the Future: Economic Theory and Sustainability,, Columbia University Press, (1998).   Google Scholar

[19]

S. M. N. Islam and B. D. Craven, Computation of non-linear continuous capital growth models: Experiments with optimal control algorithms and computer programs,, Economic Modelling: The International Journal of Theoretical and Applied Papers on Economic Modelling 18 (2001), 18 (2001), 551.   Google Scholar

[20]

S. M. N. Islam and B. D. Craven, Measuring Sustainable Growth,, in Governance and Social Responsibility, (2002).   Google Scholar

[21]

K. Judd, Numerical Methods in Economics,, MIT Press, (1998).   Google Scholar

[22]

D. Leonard D. and N. V. Long, Optimal Control Theory and Static Optimization in Economics,, Cambridge University Press, (1992).   Google Scholar

[23]

R. Lucas, Asset prices in an exchange economy,, Econometrica, 46 (1978), 1429.  doi: 10.2307/1913837.  Google Scholar

[24]

A. Malliaris and W. Brock, Stochastic Methods in Economics and Finance,, Elsevier Science, (1982).   Google Scholar

[25]

T. Mitra, Sensitivity of optimal programmes with respect to changes in target stocks: The case of irreversible investment,, Journal of Economic Theory, 29 (1983), 172.  doi: 10.1016/0022-0531(83)90128-X.  Google Scholar

[26]

T. Mitra and D. Ray, Dynamic optimization on a non-convex feasible set: Some general resulots for non-emooth technologies,, Zeitchrift für National Ökonomie, 44 (1984), 151.  doi: 10.1007/BF01289475.  Google Scholar

[27]

M. Ramon and A. Scott, (Ed.), Computational Methods for the Study of Dynamic Economies,, Oxford University Press, (1999).   Google Scholar

[28]

A. L. Schwartz, Theory and implementation of numerical methods based on Runge-Kutta integration for solving optimal control problems,, Dissertation, (1989).   Google Scholar

[29]

J. K. Sengupta and P. Fanchon, Control Theory Methods in Economics,, Kluwer Academic, (1997).  doi: 10.1007/978-1-4615-6285-6.  Google Scholar

[30]

C. Tapiero, Applied Stochastic Models and Control for Insurance and Finance,, Kluwer Academic, (1998).  doi: 10.1007/978-1-4615-5823-1.  Google Scholar

[31]

K. L. Teo, C. Goh and K. Wong, A Unified Computational Approach for Optimal Control Problems,, Pitman Monographs and Surveys in Pure and Applied Mathematics, (1991).   Google Scholar

[32]

G. Thompson and S. Thore, Computational Economics: Economic Modeling with Optimization Software,, (Chapters 21 to 22 and Appendices A&B), (1993).   Google Scholar

[33]

R. Vickson and W. Ziemba, Stochastic Optimisation Models in Finance,, Academic Press, (1975).   Google Scholar

[34]

S. Zenios, (Ed.), Financial Optimization,, Cambridge University Press, (1993).   Google Scholar

show all references

References:
[1]

P. Brandimarte, Numerical Methods in Finance: A MATLAB-based introduction,, Second edition. Statistics in Practice. Wiley-Interscience [John Wiley & Sons], (2006).  doi: 10.1002/0470080493.  Google Scholar

[2]

W. Brock, Sensitivity of optimal growth paths with respect to a change in target stocks,, Zeitchrift für National Ökonomie, 1 (1971), 73.   Google Scholar

[3]

B. D. Craven, Convergence of discrete approximations for constrained minimizatiion,, Journal of the Australian Mathematical Society, 36 (1994), 50.  doi: 10.1017/S0334270000010237.  Google Scholar

[4]

B. D. Craven, Control and Optimization,, Chapman & Hall, (1995).   Google Scholar

[5]

B. D. Craven, Optimal control and invexity,, Computers and Mathematics with Applications, 35 (1998), 17.  doi: 10.1016/S0898-1221(98)00002-9.  Google Scholar

[6]

B. D. Craven, Optimal control of an economic model with a small stochastic term,, Pacific Journal of Optimization, 1 (2005), 233.   Google Scholar

[7]

B. D. Craven, K. de Haas and J. Wettenhall, Computing optimal control,, Dynamics of Continuous, 4 (1988), 601.   Google Scholar

[8]

B. D. Craven and S. M. N. Islam, Computing optimal control on MATLAB: The scom package and economic growth models,, in Optimisation and Related Topics, 47 (1999), 61.   Google Scholar

[9]

B. D. Craven and S. M. N. Islam, Optimization in Economics and Finance,, Springer, (2005).   Google Scholar

[10]

K. Cuthbertson, Quantitative Financial Economics: Stocks, Bonds, and Foreign Exchange,, John Wiley, (1996).   Google Scholar

[11]

B. Davis and D. Elzinga, The solution of an optimal control problem in financial modeling,, Operations Research, 19 (1971), 1419.  doi: 10.1287/opre.19.6.1419.  Google Scholar

[12]

W. Diewert, Generalized Concavity and Economics,, in Generalized Concavity in Optimization and Economics, (1981).   Google Scholar

[13]

P. Dutta, On specifying the parameters of a development plan,, in Capital, (1993), 75.   Google Scholar

[14]

K. Fox, J. K. Sengupta and E. Thorbecke, The Theory of Quantitative Economic Policy with Applications to Economic Growth,, Stabilization and Planning, (1973).   Google Scholar

[15]

C. Goh and K. L. Teo, MISER: A FORTRAN program for solving optimal control problems,, Advances in Engineering Software, 10 (1988), 90.  doi: 10.1016/0141-1195(88)90005-8.  Google Scholar

[16]

C. Gourieroux and J. Janiak, Financial Econometrics,, Princeton University Press, (2001).  doi: 10.7202/010560ar.  Google Scholar

[17]

N. Hakansson, Optimal investment and consumption strategies under risk for a class of utility functions,, Econometrica, 38 (1970), 587.  doi: 10.2307/1912196.  Google Scholar

[18]

G. Heal, Valuing the Future: Economic Theory and Sustainability,, Columbia University Press, (1998).   Google Scholar

[19]

S. M. N. Islam and B. D. Craven, Computation of non-linear continuous capital growth models: Experiments with optimal control algorithms and computer programs,, Economic Modelling: The International Journal of Theoretical and Applied Papers on Economic Modelling 18 (2001), 18 (2001), 551.   Google Scholar

[20]

S. M. N. Islam and B. D. Craven, Measuring Sustainable Growth,, in Governance and Social Responsibility, (2002).   Google Scholar

[21]

K. Judd, Numerical Methods in Economics,, MIT Press, (1998).   Google Scholar

[22]

D. Leonard D. and N. V. Long, Optimal Control Theory and Static Optimization in Economics,, Cambridge University Press, (1992).   Google Scholar

[23]

R. Lucas, Asset prices in an exchange economy,, Econometrica, 46 (1978), 1429.  doi: 10.2307/1913837.  Google Scholar

[24]

A. Malliaris and W. Brock, Stochastic Methods in Economics and Finance,, Elsevier Science, (1982).   Google Scholar

[25]

T. Mitra, Sensitivity of optimal programmes with respect to changes in target stocks: The case of irreversible investment,, Journal of Economic Theory, 29 (1983), 172.  doi: 10.1016/0022-0531(83)90128-X.  Google Scholar

[26]

T. Mitra and D. Ray, Dynamic optimization on a non-convex feasible set: Some general resulots for non-emooth technologies,, Zeitchrift für National Ökonomie, 44 (1984), 151.  doi: 10.1007/BF01289475.  Google Scholar

[27]

M. Ramon and A. Scott, (Ed.), Computational Methods for the Study of Dynamic Economies,, Oxford University Press, (1999).   Google Scholar

[28]

A. L. Schwartz, Theory and implementation of numerical methods based on Runge-Kutta integration for solving optimal control problems,, Dissertation, (1989).   Google Scholar

[29]

J. K. Sengupta and P. Fanchon, Control Theory Methods in Economics,, Kluwer Academic, (1997).  doi: 10.1007/978-1-4615-6285-6.  Google Scholar

[30]

C. Tapiero, Applied Stochastic Models and Control for Insurance and Finance,, Kluwer Academic, (1998).  doi: 10.1007/978-1-4615-5823-1.  Google Scholar

[31]

K. L. Teo, C. Goh and K. Wong, A Unified Computational Approach for Optimal Control Problems,, Pitman Monographs and Surveys in Pure and Applied Mathematics, (1991).   Google Scholar

[32]

G. Thompson and S. Thore, Computational Economics: Economic Modeling with Optimization Software,, (Chapters 21 to 22 and Appendices A&B), (1993).   Google Scholar

[33]

R. Vickson and W. Ziemba, Stochastic Optimisation Models in Finance,, Academic Press, (1975).   Google Scholar

[34]

S. Zenios, (Ed.), Financial Optimization,, Cambridge University Press, (1993).   Google Scholar

[1]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[2]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[3]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[4]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[5]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[6]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[7]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[10]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[11]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[12]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[13]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[14]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[15]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[16]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[17]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[18]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[19]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[20]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]