October  2014, 10(4): 1209-1224. doi: 10.3934/jimo.2014.10.1209

Hedging strategies for discretely monitored Asian options under Lévy processes

1. 

School of Mathematical Sciences, Nankai University, Tianjin 300071

2. 

School of Business, Nankai University, Tianjin 300071

Received  May 2013 Revised  December 2013 Published  February 2014

In this work, we consider a variance-optimal hedging strategy for discretely sampled geometric Asian options, under exponential Lévy dynamics. Since it is difficult to hedge these instruments perfectly, here we choose to maximize a quadratic utility function and give the expressions of hedging strategies explicitly, based on the derived Föllmer-Schweizer decomposition of the contingent claim of geometric Asian options monitored at discrete times. The expression of its corresponding error is also given.
Citation: Xingchun Wang, Yongjin Wang. Hedging strategies for discretely monitored Asian options under Lévy processes. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1209-1224. doi: 10.3934/jimo.2014.10.1209
References:
[1]

J. Angus, A note on pricing Asian derivatives with continuous geometric averaging,, Journal of Futures Markets, 19 (1999), 845.  doi: 10.1002/(SICI)1096-9934(199910)19:7<845::AID-FUT6>3.3.CO;2-4.  Google Scholar

[2]

E. Bayraktar and H. Xing, Pricing Asian options for jump diffusion,, Mathematical Finance, 21 (2011), 117.  doi: 10.1111/j.1467-9965.2010.00426.x.  Google Scholar

[3]

N. Cai and S. G. Kou, Pricing Asian options under a hyper-exponential jump diffusion model,, Operations Research, 60 (2012), 64.  doi: 10.1287/opre.1110.1006.  Google Scholar

[4]

R. Engle, Risk and Volatility: Econometric models and financial practice,, American Economic Review, 94 (2004), 405.  doi: 10.1257/0002828041464597.  Google Scholar

[5]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in Applied Stochastic Analysis (eds. M. Davis and R. Elliott), (1991), 389.   Google Scholar

[6]

P. Foschi, S. Pagliarani and A. Pascucci, Approximations for Asian options in local volatility models,, Journal of Computational and Applied Mathematics, 237 (2013), 442.  doi: 10.1016/j.cam.2012.06.015.  Google Scholar

[7]

G. Fusai and A. Meucci, Pricing discretely monitored Asian options under Lévy processes,, Journal of Banking and Finance, 32 (2008), 2076.  doi: 10.1016/j.jbankfin.2007.12.027.  Google Scholar

[8]

S. Hodges and A. Neuberger, Optimal replication of contingent claims under transactions costs,, Review of Forward Markets, 8 (1989), 222.   Google Scholar

[9]

F. Hubalek, J. Kallsen and L. Karwczyk, Variance-optimal hedging for processes with stationary independent increments,, Annals of Applied Probability, 16 (2006), 853.  doi: 10.1214/105051606000000178.  Google Scholar

[10]

F. Hubalek and C. Sgarra, On the explicit evaluation of the geometric Asian options in stochastic volatility models with jumps,, Journal of Computational and Applied Mathematics, 235 (2011), 3355.  doi: 10.1016/j.cam.2011.01.049.  Google Scholar

[11]

B. Kim and I. S. Wee, Pricing of geometric Asian options under Heston's stochastic volatility model,, Quantitative Finance., ().  doi: 10.1080/14697688.2011.596844.  Google Scholar

[12]

D. Schweizer, Variance-optimal hedging in discrete time,, Mathematics of Operations Research, 20 (1995), 1.  doi: 10.1287/moor.20.1.1.  Google Scholar

[13]

X. Wang and Y. Wang, Variance-optimal hedging for target volatility options,, Journal of Industrial and Management Optimization, 10 (2014), 207.  doi: 10.3934/jimo.2014.10.207.  Google Scholar

show all references

References:
[1]

J. Angus, A note on pricing Asian derivatives with continuous geometric averaging,, Journal of Futures Markets, 19 (1999), 845.  doi: 10.1002/(SICI)1096-9934(199910)19:7<845::AID-FUT6>3.3.CO;2-4.  Google Scholar

[2]

E. Bayraktar and H. Xing, Pricing Asian options for jump diffusion,, Mathematical Finance, 21 (2011), 117.  doi: 10.1111/j.1467-9965.2010.00426.x.  Google Scholar

[3]

N. Cai and S. G. Kou, Pricing Asian options under a hyper-exponential jump diffusion model,, Operations Research, 60 (2012), 64.  doi: 10.1287/opre.1110.1006.  Google Scholar

[4]

R. Engle, Risk and Volatility: Econometric models and financial practice,, American Economic Review, 94 (2004), 405.  doi: 10.1257/0002828041464597.  Google Scholar

[5]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in Applied Stochastic Analysis (eds. M. Davis and R. Elliott), (1991), 389.   Google Scholar

[6]

P. Foschi, S. Pagliarani and A. Pascucci, Approximations for Asian options in local volatility models,, Journal of Computational and Applied Mathematics, 237 (2013), 442.  doi: 10.1016/j.cam.2012.06.015.  Google Scholar

[7]

G. Fusai and A. Meucci, Pricing discretely monitored Asian options under Lévy processes,, Journal of Banking and Finance, 32 (2008), 2076.  doi: 10.1016/j.jbankfin.2007.12.027.  Google Scholar

[8]

S. Hodges and A. Neuberger, Optimal replication of contingent claims under transactions costs,, Review of Forward Markets, 8 (1989), 222.   Google Scholar

[9]

F. Hubalek, J. Kallsen and L. Karwczyk, Variance-optimal hedging for processes with stationary independent increments,, Annals of Applied Probability, 16 (2006), 853.  doi: 10.1214/105051606000000178.  Google Scholar

[10]

F. Hubalek and C. Sgarra, On the explicit evaluation of the geometric Asian options in stochastic volatility models with jumps,, Journal of Computational and Applied Mathematics, 235 (2011), 3355.  doi: 10.1016/j.cam.2011.01.049.  Google Scholar

[11]

B. Kim and I. S. Wee, Pricing of geometric Asian options under Heston's stochastic volatility model,, Quantitative Finance., ().  doi: 10.1080/14697688.2011.596844.  Google Scholar

[12]

D. Schweizer, Variance-optimal hedging in discrete time,, Mathematics of Operations Research, 20 (1995), 1.  doi: 10.1287/moor.20.1.1.  Google Scholar

[13]

X. Wang and Y. Wang, Variance-optimal hedging for target volatility options,, Journal of Industrial and Management Optimization, 10 (2014), 207.  doi: 10.3934/jimo.2014.10.207.  Google Scholar

[1]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[2]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[3]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[4]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[5]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[6]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[7]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[8]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[9]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[12]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[13]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[14]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[15]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]