\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem

Abstract Related Papers Cited by
  • This paper deals with the lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Under new assumptions, which do not contain any information about solution mappings, we establish the lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem by using a scalarization method. These results improve the corresponding ones in recent literature. Some examples are given to illustrate our results.
    Mathematics Subject Classification: 90C31, 91B50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl., 294 (2004), 699-711.doi: 10.1016/j.jmaa.2004.03.014.

    [2]

    L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems, J. Optim. Theory Appl., 135 (2007), 271-284.doi: 10.1007/s10957-007-9250-9.

    [3]

    J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.

    [4]

    Berge, Topological Spaces, Oliver and Boyd, London, 1963.

    [5]

    M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl., 92 (1997), 527-542.doi: 10.1023/A:1022603406244.

    [6]

    C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality, J. Ind. Manag. Optim., 3 (2007), 519-528.doi: 10.3934/jimo.2007.3.519.

    [7]

    C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Glob. Optim., 45 (2009), 309-318.doi: 10.1007/s10898-008-9376-9.

    [8]

    C. R. Chen and S. J. Li, On the solution continuity of parametric generalized systems, Pac. J. Optim., 6 (2010), 141-151.

    [9]

    Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality, J. Glob. Optim., 32 (2005), 543-550.doi: 10.1007/s10898-004-2692-9.

    [10]

    F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl., 60(1989), 19-31.doi: 10.1007/BF00938796.

    [11]

    J. F. Fu, Vector equilibrium problems, existence theorems and convexity of solution set, J. Glob. Optim., 31(2005), 109-119.doi: 10.1007/s10898-004-4274-2.

    [12]

    F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer Academic Publishers, Dordrecht, 2000.doi: 10.1007/978-1-4613-0299-5.

    [13]

    X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems, J. Optim. Theory Appl., 133 (2007), 151-161.doi: 10.1007/s10957-007-9196-y.

    [14]

    X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138(2008), 197-205.doi: 10.1007/s10957-008-9379-1.

    [15]

    X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, J. Optim. Theory Appl., 139(2008), 35-46.doi: 10.1007/s10957-008-9429-8.

    [16]

    X. H. Gong and J. C. Yao, Connectedness of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 189-196.doi: 10.1007/s10957-008-9378-2.

    [17]

    N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.doi: 10.1016/j.mcm.2005.06.010.

    [18]

    B. T. Kien, On the lower semicontinuity of optimal solution sets, Optimization, 54 (2005), 123-130.doi: 10.1080/02331930412331330379.

    [19]

    K. Kimura and J. C.Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems, J. Glob. Optim., 41 (2008), 187-202.doi: 10.1007/s10898-007-9210-9.

    [20]

    K. Kimura and J. C.Yao, Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems, J. Ind. Manag. Optim., 4 (2008), 167-181.doi: 10.3934/jimo.2008.4.167.

    [21]

    K. Kimura and J. C.Yao, Sensitivity analysis of solution mappings of parametric generalized quasivector equilibrium problems, Taiwanese J. Math., 12 (2008), 2233-2268.

    [22]

    K. Kimura and J. C.Yao, Sensitivity analysis of vector equilibrium problems, Taiwanese J. Math., 12 (2008), 649-669.

    [23]

    P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and approximate solution sets to parametric multivalued quasivariational inequalities, J. Optim. Theory Appl., 133 (2007), 329-339.doi: 10.1007/s10957-007-9190-4.

    [24]

    Z. F. Li and G. Y. Chen, Lagrangian Multipliers, saddle points and duality in vector optimization of set-valued maps, J. Math. Anal. Appl., 215 (1997), 297-316.doi: 10.1006/jmaa.1997.5568.

    [25]

    Z. F. Li and S. Y. Wang, Lagrange Multipliers and saddle points in multiobjective programming, J. Optim. Theory Appl., 83 (1994), 63-81.doi: 10.1007/BF02191762.

    [26]

    S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 297-323.doi: 10.1023/A:1014830925232.

    [27]

    S. J. Li and Z. M. Fang, On the stability of a dual weak vector variational inequality problem, J. Ind. Manag. Optim.,, 4 (2008), 155-165.doi: 10.3934/jimo.2008.4.155.

    [28]

    S. J. Li and C. R. Chen, Stability of weak vector variational inequality, Nonlinear Anal., 70 (2009), 1528-1535.doi: 10.1016/j.na.2008.02.032.

    [29]

    S. J. Li and Z. M.Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.doi: 10.1007/s10957-010-9736-8.

    [30]

    S. J. Li, H. M. Liu and C. R. Chen, Lower semicomtinuity of parametric generalized weak vector equilibrium problems, Bull. Aust. Math. Soc., 81 (2010), 85-95.doi: 10.1017/S0004972709000628.

    [31]

    S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of solution mappings to parametric generalized strong vector equilibrium problems, J. Glob. Optim., 55 (2013), 597-610.doi: 10.1007/s10898-012-9985-1.

    [32]

    Y. D. Xu and S. J. Li, On the lower semicontinuity of the solution mappings to a para- metric generalized strong vector equilibrium problem, Positivity, 17 (2013), 341-353.doi: 10.1007/s11117-012-0170-z.

    [33]

    X. M. Yang, D. Li and S. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions, J. Optim. Theory Appl., 110 (2001), 413-427.doi: 10.1023/A:1017535631418.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return