• Previous Article
    Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model
  • JIMO Home
  • This Issue
  • Next Article
    Hedging strategies for discretely monitored Asian options under Lévy processes
October  2014, 10(4): 1225-1234. doi: 10.3934/jimo.2014.10.1225

Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem

1. 

College of Sciences, Chongqing Jiaotong University, Chongqing, 400074

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331

Received  March 2013 Revised  September 2013 Published  February 2014

This paper deals with the lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Under new assumptions, which do not contain any information about solution mappings, we establish the lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem by using a scalarization method. These results improve the corresponding ones in recent literature. Some examples are given to illustrate our results.
Citation: Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225
References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.  doi: 10.1007/s10957-007-9250-9.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley, (1984).   Google Scholar

[4]

Berge, Topological Spaces,, Oliver and Boyd, (1963).   Google Scholar

[5]

M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions,, J. Optim. Theory Appl., 92 (1997), 527.  doi: 10.1023/A:1022603406244.  Google Scholar

[6]

C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[7]

C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Glob. Optim., 45 (2009), 309.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[8]

C. R. Chen and S. J. Li, On the solution continuity of parametric generalized systems,, Pac. J. Optim., 6 (2010), 141.   Google Scholar

[9]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[10]

F. Ferro, A minimax theorem for vector-valued functions,, J. Optim. Theory Appl., 60 (1989), 19.  doi: 10.1007/BF00938796.  Google Scholar

[11]

J. F. Fu, Vector equilibrium problems, existence theorems and convexity of solution set,, J. Glob. Optim., 31 (2005), 109.  doi: 10.1007/s10898-004-4274-2.  Google Scholar

[12]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories,, Kluwer Academic Publishers, (2000).  doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[13]

X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems,, J. Optim. Theory Appl., 133 (2007), 151.  doi: 10.1007/s10957-007-9196-y.  Google Scholar

[14]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[15]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[16]

X. H. Gong and J. C. Yao, Connectedness of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 189.  doi: 10.1007/s10957-008-9378-2.  Google Scholar

[17]

N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[18]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.  doi: 10.1080/02331930412331330379.  Google Scholar

[19]

K. Kimura and J. C.Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Glob. Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[20]

K. Kimura and J. C.Yao, Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems,, J. Ind. Manag. Optim., 4 (2008), 167.  doi: 10.3934/jimo.2008.4.167.  Google Scholar

[21]

K. Kimura and J. C.Yao, Sensitivity analysis of solution mappings of parametric generalized quasivector equilibrium problems,, Taiwanese J. Math., 12 (2008), 2233.   Google Scholar

[22]

K. Kimura and J. C.Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 649.   Google Scholar

[23]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and approximate solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[24]

Z. F. Li and G. Y. Chen, Lagrangian Multipliers, saddle points and duality in vector optimization of set-valued maps,, J. Math. Anal. Appl., 215 (1997), 297.  doi: 10.1006/jmaa.1997.5568.  Google Scholar

[25]

Z. F. Li and S. Y. Wang, Lagrange Multipliers and saddle points in multiobjective programming,, J. Optim. Theory Appl., 83 (1994), 63.  doi: 10.1007/BF02191762.  Google Scholar

[26]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim. Theory Appl., 113 (2002), 297.  doi: 10.1023/A:1014830925232.  Google Scholar

[27]

S. J. Li and Z. M. Fang, On the stability of a dual weak vector variational inequality problem,, J. Ind. Manag. Optim., 4 (2008), 155.  doi: 10.3934/jimo.2008.4.155.  Google Scholar

[28]

S. J. Li and C. R. Chen, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[29]

S. J. Li and Z. M.Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[30]

S. J. Li, H. M. Liu and C. R. Chen, Lower semicomtinuity of parametric generalized weak vector equilibrium problems,, Bull. Aust. Math. Soc., 81 (2010), 85.  doi: 10.1017/S0004972709000628.  Google Scholar

[31]

S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of solution mappings to parametric generalized strong vector equilibrium problems,, J. Glob. Optim., 55 (2013), 597.  doi: 10.1007/s10898-012-9985-1.  Google Scholar

[32]

Y. D. Xu and S. J. Li, On the lower semicontinuity of the solution mappings to a para- metric generalized strong vector equilibrium problem,, Positivity, 17 (2013), 341.  doi: 10.1007/s11117-012-0170-z.  Google Scholar

[33]

X. M. Yang, D. Li and S. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions,, J. Optim. Theory Appl., 110 (2001), 413.  doi: 10.1023/A:1017535631418.  Google Scholar

show all references

References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems,, J. Math. Anal. Appl., 294 (2004), 699.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems,, J. Optim. Theory Appl., 135 (2007), 271.  doi: 10.1007/s10957-007-9250-9.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis,, Wiley, (1984).   Google Scholar

[4]

Berge, Topological Spaces,, Oliver and Boyd, (1963).   Google Scholar

[5]

M. Bianchi, N. Hadjisavvas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions,, J. Optim. Theory Appl., 92 (1997), 527.  doi: 10.1023/A:1022603406244.  Google Scholar

[6]

C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[7]

C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems,, J. Glob. Optim., 45 (2009), 309.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[8]

C. R. Chen and S. J. Li, On the solution continuity of parametric generalized systems,, Pac. J. Optim., 6 (2010), 141.   Google Scholar

[9]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality,, J. Glob. Optim., 32 (2005), 543.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[10]

F. Ferro, A minimax theorem for vector-valued functions,, J. Optim. Theory Appl., 60 (1989), 19.  doi: 10.1007/BF00938796.  Google Scholar

[11]

J. F. Fu, Vector equilibrium problems, existence theorems and convexity of solution set,, J. Glob. Optim., 31 (2005), 109.  doi: 10.1007/s10898-004-4274-2.  Google Scholar

[12]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories,, Kluwer Academic Publishers, (2000).  doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[13]

X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems,, J. Optim. Theory Appl., 133 (2007), 151.  doi: 10.1007/s10957-007-9196-y.  Google Scholar

[14]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[15]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems,, J. Optim. Theory Appl., 139 (2008), 35.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[16]

X. H. Gong and J. C. Yao, Connectedness of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 189.  doi: 10.1007/s10957-008-9378-2.  Google Scholar

[17]

N. J. Huang, J. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems,, Math. Comput. Model., 43 (2006), 1267.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[18]

B. T. Kien, On the lower semicontinuity of optimal solution sets,, Optimization, 54 (2005), 123.  doi: 10.1080/02331930412331330379.  Google Scholar

[19]

K. Kimura and J. C.Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Glob. Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[20]

K. Kimura and J. C.Yao, Semicontinuity of solution mappings of parametric generalized strong vector equilibrium problems,, J. Ind. Manag. Optim., 4 (2008), 167.  doi: 10.3934/jimo.2008.4.167.  Google Scholar

[21]

K. Kimura and J. C.Yao, Sensitivity analysis of solution mappings of parametric generalized quasivector equilibrium problems,, Taiwanese J. Math., 12 (2008), 2233.   Google Scholar

[22]

K. Kimura and J. C.Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Math., 12 (2008), 649.   Google Scholar

[23]

P. Q. Khanh and L. M. Luu, Lower and upper semicontinuity of the solution sets and approximate solution sets to parametric multivalued quasivariational inequalities,, J. Optim. Theory Appl., 133 (2007), 329.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[24]

Z. F. Li and G. Y. Chen, Lagrangian Multipliers, saddle points and duality in vector optimization of set-valued maps,, J. Math. Anal. Appl., 215 (1997), 297.  doi: 10.1006/jmaa.1997.5568.  Google Scholar

[25]

Z. F. Li and S. Y. Wang, Lagrange Multipliers and saddle points in multiobjective programming,, J. Optim. Theory Appl., 83 (1994), 63.  doi: 10.1007/BF02191762.  Google Scholar

[26]

S. J. Li, G. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems,, J. Optim. Theory Appl., 113 (2002), 297.  doi: 10.1023/A:1014830925232.  Google Scholar

[27]

S. J. Li and Z. M. Fang, On the stability of a dual weak vector variational inequality problem,, J. Ind. Manag. Optim., 4 (2008), 155.  doi: 10.3934/jimo.2008.4.155.  Google Scholar

[28]

S. J. Li and C. R. Chen, Stability of weak vector variational inequality,, Nonlinear Anal., 70 (2009), 1528.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[29]

S. J. Li and Z. M.Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality,, J. Optim. Theory Appl., 147 (2010), 507.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[30]

S. J. Li, H. M. Liu and C. R. Chen, Lower semicomtinuity of parametric generalized weak vector equilibrium problems,, Bull. Aust. Math. Soc., 81 (2010), 85.  doi: 10.1017/S0004972709000628.  Google Scholar

[31]

S. J. Li, H. M. Liu, Y. Zhang and Z. M. Fang, Continuity of solution mappings to parametric generalized strong vector equilibrium problems,, J. Glob. Optim., 55 (2013), 597.  doi: 10.1007/s10898-012-9985-1.  Google Scholar

[32]

Y. D. Xu and S. J. Li, On the lower semicontinuity of the solution mappings to a para- metric generalized strong vector equilibrium problem,, Positivity, 17 (2013), 341.  doi: 10.1007/s11117-012-0170-z.  Google Scholar

[33]

X. M. Yang, D. Li and S. Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions,, J. Optim. Theory Appl., 110 (2001), 413.  doi: 10.1023/A:1017535631418.  Google Scholar

[1]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[2]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[3]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[4]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[5]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[6]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[7]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[8]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[9]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[10]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[11]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[12]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[13]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[14]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[15]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[16]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[17]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[18]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[19]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[20]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]