• Previous Article
    Optimal pricing policy for deteriorating items with preservation technology investment
  • JIMO Home
  • This Issue
  • Next Article
    Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem
October  2014, 10(4): 1235-1259. doi: 10.3934/jimo.2014.10.1235

Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model

1. 

School of Finance, The Center of Cooperative Innovation for Modern Service Industry, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

School of Finance and Statistics, Research Center of International Finance and Risk Management, East China Normal University, Shanghai 200241, China

3. 

School of Mathematics and Computer Sciences, Anhui Normal University, Wuhu, Anhui, 241003

Received  April 2013 Revised  October 2013 Published  February 2014

In the framework of dual risk model, Yao et al. [18](Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs. European Journal of Operational Research, 211, 568-576) show how to determine optimal dividend and capital injection strategy when the dividend rate is unrestricted and the bankruptcy is forbidden. In this paper, we further include constrain on dividend rate and allow for bankruptcy when it is in deficit. We seek the optimal strategy for maximizing the expected discounted dividends minus the discounted capital injections before bankruptcy. Explicit solutions for strategy and value function are obtained when income jumps follow a hyper-exponential distribution, the corresponding limit results are presented, some known results are extended.
Citation: Dingjun Yao, Rongming Wang, Lin Xu. Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1235-1259. doi: 10.3934/jimo.2014.10.1235
References:
[1]

H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance,, RACSAM Rev. R. Acad. Cien. Serie A. Mat., 103 (2009), 295.  doi: 10.1007/BF03191909.  Google Scholar

[2]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out,, Insurance: Mathematics and Economics, 20 (1997), 1.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[3]

B. Avanzi, J. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion,, ASTIN Bulletin, 41 (2011), 611.  doi: 10.2139/ssrn.1709174.  Google Scholar

[4]

F. Avram, Z. Palmowski and M. R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process,, The Annals of Applied Probability, 17 (2007), 156.  doi: 10.1214/105051606000000709.  Google Scholar

[5]

L. Bai and J. Guo, Optimal dividend payments in the classical risk model when payments are subject to both transaction costs and taxes,, Scandinavian Actuarial Journal, 2010 (2010), 36.  doi: 10.1080/03461230802591098.  Google Scholar

[6]

A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm,, Mathematical Finance, 16 (2006), 181.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[7]

H. Dai, Z. Liu, and N. Luan, Optimal dividend strategies in a dual model with capital injections,, Mathematical Methods of Operations Research, 72 (2010), 129.  doi: 10.1007/s00186-010-0312-7.  Google Scholar

[8]

A. Feldmann and W. Whitt, Fitting mixtures of exponentials to long-tail distributions to analyze network performance models,, Performance Evaluation, 31 (1998), 245.  doi: 10.1016/S0166-5316(97)00003-5.  Google Scholar

[9]

N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections,, Insurance: Mathmatics and Economics, 43 (2008), 270.  doi: 10.1016/j.insmatheco.2008.05.013.  Google Scholar

[10]

A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs,, Insurance: Mathematics and Economics, 42 (2008), 954.  doi: 10.1016/j.insmatheco.2007.10.013.  Google Scholar

[11]

A. C. Y. Ng, On a dual model with a dividend threshold,, Insurance: Mathematics and Economics, 44 (2009), 315.  doi: 10.1016/j.insmatheco.2008.11.011.  Google Scholar

[12]

J. Paulsen, Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs,, SIAM Journal on Control and Optimization, 47 (2008), 2201.  doi: 10.1137/070691632.  Google Scholar

[13]

X. Peng, M. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs,, Insurance: Mathematics and Economics, 51 (2012), 576.  doi: 10.1016/j.insmatheco.2012.08.004.  Google Scholar

[14]

S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns,, Mathematical Finance, 12 (2002), 155.  doi: 10.1111/1467-9965.t01-2-02002.  Google Scholar

[15]

N. Scheer and H. Schmidli, Optimal dividend strategies in a cramér-lundberg model with capital injections and administration costs,, European Actuarial Journal, 1 (2011), 57.  doi: 10.1007/s13385-011-0007-3.  Google Scholar

[16]

S. Thonhauser and H. Albrecher, Dividend maximization under consideration of the time value of ruin,, Insurance: Mathematics and Economics, 44 (2007), 163.  doi: 10.1016/j.insmatheco.2006.10.013.  Google Scholar

[17]

D. Yao, H. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.  doi: 10.3934/jimo.2010.6.761.  Google Scholar

[18]

D. Yao, H. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs,, European Journal of Operational Research, 211 (2011), 568.  doi: 10.1016/j.ejor.2011.01.015.  Google Scholar

show all references

References:
[1]

H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance,, RACSAM Rev. R. Acad. Cien. Serie A. Mat., 103 (2009), 295.  doi: 10.1007/BF03191909.  Google Scholar

[2]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out,, Insurance: Mathematics and Economics, 20 (1997), 1.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[3]

B. Avanzi, J. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion,, ASTIN Bulletin, 41 (2011), 611.  doi: 10.2139/ssrn.1709174.  Google Scholar

[4]

F. Avram, Z. Palmowski and M. R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process,, The Annals of Applied Probability, 17 (2007), 156.  doi: 10.1214/105051606000000709.  Google Scholar

[5]

L. Bai and J. Guo, Optimal dividend payments in the classical risk model when payments are subject to both transaction costs and taxes,, Scandinavian Actuarial Journal, 2010 (2010), 36.  doi: 10.1080/03461230802591098.  Google Scholar

[6]

A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm,, Mathematical Finance, 16 (2006), 181.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[7]

H. Dai, Z. Liu, and N. Luan, Optimal dividend strategies in a dual model with capital injections,, Mathematical Methods of Operations Research, 72 (2010), 129.  doi: 10.1007/s00186-010-0312-7.  Google Scholar

[8]

A. Feldmann and W. Whitt, Fitting mixtures of exponentials to long-tail distributions to analyze network performance models,, Performance Evaluation, 31 (1998), 245.  doi: 10.1016/S0166-5316(97)00003-5.  Google Scholar

[9]

N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections,, Insurance: Mathmatics and Economics, 43 (2008), 270.  doi: 10.1016/j.insmatheco.2008.05.013.  Google Scholar

[10]

A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs,, Insurance: Mathematics and Economics, 42 (2008), 954.  doi: 10.1016/j.insmatheco.2007.10.013.  Google Scholar

[11]

A. C. Y. Ng, On a dual model with a dividend threshold,, Insurance: Mathematics and Economics, 44 (2009), 315.  doi: 10.1016/j.insmatheco.2008.11.011.  Google Scholar

[12]

J. Paulsen, Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs,, SIAM Journal on Control and Optimization, 47 (2008), 2201.  doi: 10.1137/070691632.  Google Scholar

[13]

X. Peng, M. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs,, Insurance: Mathematics and Economics, 51 (2012), 576.  doi: 10.1016/j.insmatheco.2012.08.004.  Google Scholar

[14]

S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns,, Mathematical Finance, 12 (2002), 155.  doi: 10.1111/1467-9965.t01-2-02002.  Google Scholar

[15]

N. Scheer and H. Schmidli, Optimal dividend strategies in a cramér-lundberg model with capital injections and administration costs,, European Actuarial Journal, 1 (2011), 57.  doi: 10.1007/s13385-011-0007-3.  Google Scholar

[16]

S. Thonhauser and H. Albrecher, Dividend maximization under consideration of the time value of ruin,, Insurance: Mathematics and Economics, 44 (2007), 163.  doi: 10.1016/j.insmatheco.2006.10.013.  Google Scholar

[17]

D. Yao, H. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.  doi: 10.3934/jimo.2010.6.761.  Google Scholar

[18]

D. Yao, H. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs,, European Journal of Operational Research, 211 (2011), 568.  doi: 10.1016/j.ejor.2011.01.015.  Google Scholar

[1]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[2]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[3]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[5]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[6]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[7]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[8]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[9]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[12]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[13]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[14]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[15]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[16]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[17]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[18]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[19]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[20]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]