-
Previous Article
Optimal pricing policy for deteriorating items with preservation technology investment
- JIMO Home
- This Issue
-
Next Article
Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem
Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model
1. | School of Finance, The Center of Cooperative Innovation for Modern Service Industry, Nanjing University of Finance and Economics, Nanjing 210023, China |
2. | School of Finance and Statistics, Research Center of International Finance and Risk Management, East China Normal University, Shanghai 200241, China |
3. | School of Mathematics and Computer Sciences, Anhui Normal University, Wuhu, Anhui, 241003 |
References:
[1] |
H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance,, RACSAM Rev. R. Acad. Cien. Serie A. Mat., 103 (2009), 295.
doi: 10.1007/BF03191909. |
[2] |
S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out,, Insurance: Mathematics and Economics, 20 (1997), 1.
doi: 10.1016/S0167-6687(96)00017-0. |
[3] |
B. Avanzi, J. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion,, ASTIN Bulletin, 41 (2011), 611.
doi: 10.2139/ssrn.1709174. |
[4] |
F. Avram, Z. Palmowski and M. R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process,, The Annals of Applied Probability, 17 (2007), 156.
doi: 10.1214/105051606000000709. |
[5] |
L. Bai and J. Guo, Optimal dividend payments in the classical risk model when payments are subject to both transaction costs and taxes,, Scandinavian Actuarial Journal, 2010 (2010), 36.
doi: 10.1080/03461230802591098. |
[6] |
A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm,, Mathematical Finance, 16 (2006), 181.
doi: 10.1111/j.1467-9965.2006.00267.x. |
[7] |
H. Dai, Z. Liu, and N. Luan, Optimal dividend strategies in a dual model with capital injections,, Mathematical Methods of Operations Research, 72 (2010), 129.
doi: 10.1007/s00186-010-0312-7. |
[8] |
A. Feldmann and W. Whitt, Fitting mixtures of exponentials to long-tail distributions to analyze network performance models,, Performance Evaluation, 31 (1998), 245.
doi: 10.1016/S0166-5316(97)00003-5. |
[9] |
N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections,, Insurance: Mathmatics and Economics, 43 (2008), 270.
doi: 10.1016/j.insmatheco.2008.05.013. |
[10] |
A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs,, Insurance: Mathematics and Economics, 42 (2008), 954.
doi: 10.1016/j.insmatheco.2007.10.013. |
[11] |
A. C. Y. Ng, On a dual model with a dividend threshold,, Insurance: Mathematics and Economics, 44 (2009), 315.
doi: 10.1016/j.insmatheco.2008.11.011. |
[12] |
J. Paulsen, Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs,, SIAM Journal on Control and Optimization, 47 (2008), 2201.
doi: 10.1137/070691632. |
[13] |
X. Peng, M. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs,, Insurance: Mathematics and Economics, 51 (2012), 576.
doi: 10.1016/j.insmatheco.2012.08.004. |
[14] |
S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns,, Mathematical Finance, 12 (2002), 155.
doi: 10.1111/1467-9965.t01-2-02002. |
[15] |
N. Scheer and H. Schmidli, Optimal dividend strategies in a cramér-lundberg model with capital injections and administration costs,, European Actuarial Journal, 1 (2011), 57.
doi: 10.1007/s13385-011-0007-3. |
[16] |
S. Thonhauser and H. Albrecher, Dividend maximization under consideration of the time value of ruin,, Insurance: Mathematics and Economics, 44 (2007), 163.
doi: 10.1016/j.insmatheco.2006.10.013. |
[17] |
D. Yao, H. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.
doi: 10.3934/jimo.2010.6.761. |
[18] |
D. Yao, H. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs,, European Journal of Operational Research, 211 (2011), 568.
doi: 10.1016/j.ejor.2011.01.015. |
show all references
References:
[1] |
H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance,, RACSAM Rev. R. Acad. Cien. Serie A. Mat., 103 (2009), 295.
doi: 10.1007/BF03191909. |
[2] |
S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out,, Insurance: Mathematics and Economics, 20 (1997), 1.
doi: 10.1016/S0167-6687(96)00017-0. |
[3] |
B. Avanzi, J. Shen and B. Wong, Optimal dividends and capital injections in the dual model with diffusion,, ASTIN Bulletin, 41 (2011), 611.
doi: 10.2139/ssrn.1709174. |
[4] |
F. Avram, Z. Palmowski and M. R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process,, The Annals of Applied Probability, 17 (2007), 156.
doi: 10.1214/105051606000000709. |
[5] |
L. Bai and J. Guo, Optimal dividend payments in the classical risk model when payments are subject to both transaction costs and taxes,, Scandinavian Actuarial Journal, 2010 (2010), 36.
doi: 10.1080/03461230802591098. |
[6] |
A. Cadenillas, T. Choulli, M. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm,, Mathematical Finance, 16 (2006), 181.
doi: 10.1111/j.1467-9965.2006.00267.x. |
[7] |
H. Dai, Z. Liu, and N. Luan, Optimal dividend strategies in a dual model with capital injections,, Mathematical Methods of Operations Research, 72 (2010), 129.
doi: 10.1007/s00186-010-0312-7. |
[8] |
A. Feldmann and W. Whitt, Fitting mixtures of exponentials to long-tail distributions to analyze network performance models,, Performance Evaluation, 31 (1998), 245.
doi: 10.1016/S0166-5316(97)00003-5. |
[9] |
N. Kulenko and H. Schimidli, Optimal dividend strategy in a Cramér-Lundberg model with capital injections,, Insurance: Mathmatics and Economics, 43 (2008), 270.
doi: 10.1016/j.insmatheco.2008.05.013. |
[10] |
A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs,, Insurance: Mathematics and Economics, 42 (2008), 954.
doi: 10.1016/j.insmatheco.2007.10.013. |
[11] |
A. C. Y. Ng, On a dual model with a dividend threshold,, Insurance: Mathematics and Economics, 44 (2009), 315.
doi: 10.1016/j.insmatheco.2008.11.011. |
[12] |
J. Paulsen, Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs,, SIAM Journal on Control and Optimization, 47 (2008), 2201.
doi: 10.1137/070691632. |
[13] |
X. Peng, M. Chen and J. Guo, Optimal dividend and equity issuance problem with proportional and fixed transaction costs,, Insurance: Mathematics and Economics, 51 (2012), 576.
doi: 10.1016/j.insmatheco.2012.08.004. |
[14] |
S. P. Sethi and M. Taksar, Optimal financing of a corporation subject to random returns,, Mathematical Finance, 12 (2002), 155.
doi: 10.1111/1467-9965.t01-2-02002. |
[15] |
N. Scheer and H. Schmidli, Optimal dividend strategies in a cramér-lundberg model with capital injections and administration costs,, European Actuarial Journal, 1 (2011), 57.
doi: 10.1007/s13385-011-0007-3. |
[16] |
S. Thonhauser and H. Albrecher, Dividend maximization under consideration of the time value of ruin,, Insurance: Mathematics and Economics, 44 (2007), 163.
doi: 10.1016/j.insmatheco.2006.10.013. |
[17] |
D. Yao, H. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs,, Journal of Industrial and Management Optimization, 6 (2010), 761.
doi: 10.3934/jimo.2010.6.761. |
[18] |
D. Yao, H. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs,, European Journal of Operational Research, 211 (2011), 568.
doi: 10.1016/j.ejor.2011.01.015. |
[1] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[2] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[3] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[4] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[5] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[6] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[7] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[8] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[9] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[10] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[11] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[12] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[13] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[14] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[15] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[16] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[17] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[18] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[19] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[20] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]