January  2014, 10(1): 167-192. doi: 10.3934/jimo.2014.10.167

A dual tandem queueing system with GI service time at the first queue

1. 

Department of Telecommunications, Budapest University of Technology and Economics, Budapest

2. 

Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, Kobe 658-8501

Received  September 2012 Revised  June 2013 Published  October 2013

In this paper we consider the analysis of a tandem queueing model $M/G/1 -> ./M/1$. In contrast to the vast majority of the previous literature on tandem queuing models we consider the case with GI service time at the first queue and with infinite buffers. The system can be described by an M/G/1-type Markov process at the departure epochs of the first queue. The main result of the paper is the steady-state vector generating function at the embedded epochs, which characterizes the joint distribution of the number of customers at both queues. The steady-state Laplace-Stieljes transform and the mean of the sojourn time of the customers in the system are also obtained.
    We provide numerical examples and discuss the dependency of the steady-state mean of the sojourn time of the customers on several basic system parameters. Utilizing the structural characteristics of the model we discuss the interpretation of the results. This gives an insight into the behavior of this tandem queuing model and can be a base for developing approximations for it.
Citation: Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167
References:
[1]

D. Bertsekas and R. Gallager, "Data Networks,", 2nd Edition, (1991).   Google Scholar

[2]

O. J. Boxma and J. A. C. Resing, Tandem queues with deterministic service times,, Annals of Operations Research, 49 (1994), 221.  doi: 10.1007/BF02031599.  Google Scholar

[3]

G. Casale, P. G. Harrison and M. Vigliotti, Product-Form Approximation of Tandem Queues via Matrix Geometric Methods,, in, (2010).   Google Scholar

[4]

A. N. Dudin, C. S. Kim, V. I. Klimenok and O. S. Taramin, A dual tandem queueing system with a finite intermediate buffer and cross traffic,, in, (2010), 102.  doi: 10.1145/1837856.1837872.  Google Scholar

[5]

A. Heindl, Decomposition of general tandem queueing networks with mmpp input,, Performance Evaluation, 44 (2001), 5.   Google Scholar

[6]

B. Van Houdt and A. S. Alfa, Response time in a tandem queue with blocking, Markovian arrivals and phase-type services,, Operations Research Letters, 33 (2005), 373.  doi: 10.1016/j.orl.2004.08.004.  Google Scholar

[7]

L. Kleinrock, "Queuing Systems. Vol I: Theory,", John Wiley, (1975).   Google Scholar

[8]

V. Klimenok, A. Dudin and V. Vishnevsky, On the stationary distribution of tandem queue consisting of a finite number of stations,, in, 291 (2012), 383.  doi: 10.1007/978-3-642-31217-5_40.  Google Scholar

[9]

G. Latouche and V. Ramaswami, "Introduction to Matrix Geometric Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability,", Society for Industrial and Applied Mathematics (SIAM), (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[10]

L. Le and E. Hossain, Tandem queue models with applications to QoS routing in multihop wireless networks,, IEEE Trans. on Mobile Computing, 7 (2008), 1025.   Google Scholar

[11]

D. L. Lucantoni, New results on the single server queue with a batch markovian arrival process,, Comm. Statist. Stochastic Models, 7 (1991), 1.  doi: 10.1080/15326349108807174.  Google Scholar

[12]

R. A. Marie, Calculating equilibrium probabilities for $\lambda(n)$/$C_k$/1/N queue,, in, (1980), 117.   Google Scholar

[13]

D. G. Pandelis, Optimal control of flexible servers in two tandem queues with operating costs,, Probability in the Engineering and Informational Sciences, 22 (2008), 107.  doi: 10.1017/S0269964808000077.  Google Scholar

[14]

Y. E. Sagduyu and A. Ephremides, Network Coding in Wireless Queueing Networks: Tandem Network Case,, in, (2006).   Google Scholar

[15]

M. van Vuuren, "Performance Analysis of Manufacturing Systems: Queueing Approximations and Algorithms,", Ph.D thesis, (2007).   Google Scholar

[16]

M. van Vuuren, I. J. B. F. Adan and A. E. Resing-Sassenb, Performance analysis of multi-server tandem queues with finite buffers and blocking,, OR Spektrum, 27 (2005), 315.  doi: 10.1007/s00291-004-0189-z.  Google Scholar

show all references

References:
[1]

D. Bertsekas and R. Gallager, "Data Networks,", 2nd Edition, (1991).   Google Scholar

[2]

O. J. Boxma and J. A. C. Resing, Tandem queues with deterministic service times,, Annals of Operations Research, 49 (1994), 221.  doi: 10.1007/BF02031599.  Google Scholar

[3]

G. Casale, P. G. Harrison and M. Vigliotti, Product-Form Approximation of Tandem Queues via Matrix Geometric Methods,, in, (2010).   Google Scholar

[4]

A. N. Dudin, C. S. Kim, V. I. Klimenok and O. S. Taramin, A dual tandem queueing system with a finite intermediate buffer and cross traffic,, in, (2010), 102.  doi: 10.1145/1837856.1837872.  Google Scholar

[5]

A. Heindl, Decomposition of general tandem queueing networks with mmpp input,, Performance Evaluation, 44 (2001), 5.   Google Scholar

[6]

B. Van Houdt and A. S. Alfa, Response time in a tandem queue with blocking, Markovian arrivals and phase-type services,, Operations Research Letters, 33 (2005), 373.  doi: 10.1016/j.orl.2004.08.004.  Google Scholar

[7]

L. Kleinrock, "Queuing Systems. Vol I: Theory,", John Wiley, (1975).   Google Scholar

[8]

V. Klimenok, A. Dudin and V. Vishnevsky, On the stationary distribution of tandem queue consisting of a finite number of stations,, in, 291 (2012), 383.  doi: 10.1007/978-3-642-31217-5_40.  Google Scholar

[9]

G. Latouche and V. Ramaswami, "Introduction to Matrix Geometric Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability,", Society for Industrial and Applied Mathematics (SIAM), (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[10]

L. Le and E. Hossain, Tandem queue models with applications to QoS routing in multihop wireless networks,, IEEE Trans. on Mobile Computing, 7 (2008), 1025.   Google Scholar

[11]

D. L. Lucantoni, New results on the single server queue with a batch markovian arrival process,, Comm. Statist. Stochastic Models, 7 (1991), 1.  doi: 10.1080/15326349108807174.  Google Scholar

[12]

R. A. Marie, Calculating equilibrium probabilities for $\lambda(n)$/$C_k$/1/N queue,, in, (1980), 117.   Google Scholar

[13]

D. G. Pandelis, Optimal control of flexible servers in two tandem queues with operating costs,, Probability in the Engineering and Informational Sciences, 22 (2008), 107.  doi: 10.1017/S0269964808000077.  Google Scholar

[14]

Y. E. Sagduyu and A. Ephremides, Network Coding in Wireless Queueing Networks: Tandem Network Case,, in, (2006).   Google Scholar

[15]

M. van Vuuren, "Performance Analysis of Manufacturing Systems: Queueing Approximations and Algorithms,", Ph.D thesis, (2007).   Google Scholar

[16]

M. van Vuuren, I. J. B. F. Adan and A. E. Resing-Sassenb, Performance analysis of multi-server tandem queues with finite buffers and blocking,, OR Spektrum, 27 (2005), 315.  doi: 10.1007/s00291-004-0189-z.  Google Scholar

[1]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[2]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[3]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[4]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[5]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[6]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[7]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[8]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[9]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[10]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[11]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[12]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Recent progresses in the theory of nonlinear nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[15]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[16]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[17]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[18]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[19]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[20]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]