January  2014, 10(1): 207-218. doi: 10.3934/jimo.2014.10.207

Variance-optimal hedging for target volatility options

1. 

School of Mathematical Sciences, Nankai University, Tianjin 300071, China

2. 

School of Business, Nankai University, Tianjin 300071, China

Received  March 2012 Revised  March 2013 Published  October 2013

In this paper, we consider a variance-optimal hedge for target volatility options, under exponential Lévy dynamics. Since the payoff of target volatility options is related with realized volatility of some underlying asset, which is path-dependent, it is difficult to price this instrument. Here we will derive an explicit Föllmer-Schweizer decomposition of the contingent claim of target volatility options and then give the explicit expressions of hedging strategies in both discrete time and continuous time.
Citation: Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207
References:
[1]

P. Carr, R. Lee and L. Wu, Variance swaps on time-changed Lévy processes,, Finance and Stochastics, 16 (2012), 335.  doi: 10.1007/s00780-011-0157-9.  Google Scholar

[2]

G. Di Graziano and L. Torricelli, Target Volatility Option Pricing,, International Journal of Theoretical and Applied Finance, 15 (2012), 1250005.  doi: 10.1142/S0219024911006474.  Google Scholar

[3]

R. Elloitt, T. Siu and L. Chan, Pricing volatility swaps under Heston's stochastic volatility model with regime switching,, Applied Mathematical Finance, 14 (2007), 41.  doi: 10.1080/13504860600659222.  Google Scholar

[4]

R. Engle, Risk and Volatility: Econometric models and financial practice,, American Economic Review, 94 (2004), 405.  doi: 10.1257/0002828041464597.  Google Scholar

[5]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in, (1991), 389.   Google Scholar

[6]

J. Fu, X. Wang and Y. Wang, Variance-optimal hedging for volatility swaps,, preprint, (2012).   Google Scholar

[7]

S. Howison, A. Rafailidis and H. Rasmussen, On the pricing and hedging of volatility derivatives,, Applied Mathematical Finance, 11 (2004), 317.  doi: 10.1080/1350486042000254024.  Google Scholar

[8]

F. Hubalek, J. Kallsen and L. Karwczyk, Variance-optimal hedging for processes with stationary independent increments,, Annals of Applied Probability, 16 (2006), 853.  doi: 10.1214/105051606000000178.  Google Scholar

[9]

P. Protter, "Stochastic Integration and Differential Equations,", Second edition. Applications of Mathematics (New York), (2004).   Google Scholar

[10]

K. Sato, "Lévy Processes and Infinitely Divisible Distributions,", Cambridge University Press, (2001).   Google Scholar

[11]

D. Schweizer, Approximating random variables by stochastic integrals,, Annals of Probability, 22 (1994), 1536.  doi: 10.1214/aop/1176988611.  Google Scholar

[12]

D. Schweizer, Variance-optimal hedging in discrete time,, Mathematics of Operations Research, 20 (1995), 1.  doi: 10.1287/moor.20.1.1.  Google Scholar

[13]

S. Song, X. Wang and Y. Wang, Pricing volatility derivatives with jump underlying and stochastic volatility,, preprint, (2011).   Google Scholar

[14]

S. Zhu and G. Lian, A closed-form exact solution for pricing variance swaps with stochastic volatility,, Mathematical Finance, 21 (2011), 233.  doi: 10.1111/j.1467-9965.2010.00436.x.  Google Scholar

show all references

References:
[1]

P. Carr, R. Lee and L. Wu, Variance swaps on time-changed Lévy processes,, Finance and Stochastics, 16 (2012), 335.  doi: 10.1007/s00780-011-0157-9.  Google Scholar

[2]

G. Di Graziano and L. Torricelli, Target Volatility Option Pricing,, International Journal of Theoretical and Applied Finance, 15 (2012), 1250005.  doi: 10.1142/S0219024911006474.  Google Scholar

[3]

R. Elloitt, T. Siu and L. Chan, Pricing volatility swaps under Heston's stochastic volatility model with regime switching,, Applied Mathematical Finance, 14 (2007), 41.  doi: 10.1080/13504860600659222.  Google Scholar

[4]

R. Engle, Risk and Volatility: Econometric models and financial practice,, American Economic Review, 94 (2004), 405.  doi: 10.1257/0002828041464597.  Google Scholar

[5]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in, (1991), 389.   Google Scholar

[6]

J. Fu, X. Wang and Y. Wang, Variance-optimal hedging for volatility swaps,, preprint, (2012).   Google Scholar

[7]

S. Howison, A. Rafailidis and H. Rasmussen, On the pricing and hedging of volatility derivatives,, Applied Mathematical Finance, 11 (2004), 317.  doi: 10.1080/1350486042000254024.  Google Scholar

[8]

F. Hubalek, J. Kallsen and L. Karwczyk, Variance-optimal hedging for processes with stationary independent increments,, Annals of Applied Probability, 16 (2006), 853.  doi: 10.1214/105051606000000178.  Google Scholar

[9]

P. Protter, "Stochastic Integration and Differential Equations,", Second edition. Applications of Mathematics (New York), (2004).   Google Scholar

[10]

K. Sato, "Lévy Processes and Infinitely Divisible Distributions,", Cambridge University Press, (2001).   Google Scholar

[11]

D. Schweizer, Approximating random variables by stochastic integrals,, Annals of Probability, 22 (1994), 1536.  doi: 10.1214/aop/1176988611.  Google Scholar

[12]

D. Schweizer, Variance-optimal hedging in discrete time,, Mathematics of Operations Research, 20 (1995), 1.  doi: 10.1287/moor.20.1.1.  Google Scholar

[13]

S. Song, X. Wang and Y. Wang, Pricing volatility derivatives with jump underlying and stochastic volatility,, preprint, (2011).   Google Scholar

[14]

S. Zhu and G. Lian, A closed-form exact solution for pricing variance swaps with stochastic volatility,, Mathematical Finance, 21 (2011), 233.  doi: 10.1111/j.1467-9965.2010.00436.x.  Google Scholar

[1]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[2]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[3]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[4]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[5]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[6]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[7]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[8]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[9]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[12]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[13]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[14]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[15]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[16]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[17]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[18]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (123)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]