- Previous Article
- JIMO Home
- This Issue
-
Next Article
Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation
Towards an optimization theory for deforming dense granular materials: Minimum cost maximum flow solutions
1. | Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845 |
2. | Department of Mathematics and Statistics, University of Melbourne, Melbourne, Australia 3010, Australia |
References:
[1] |
R. Arévalo, I. Zuriguel and D. Maza, Topology of the force network in the jamming transition of an isotropically compressed granular packing, Physical Review E, 81 (2010), 041302. |
[2] |
D. P. Bertsekas, "Network Optimization: Continuous and Discrete Models (Optimization, Computation, and Control)," Athena Scientific, 1998. |
[3] |
J. A. Bondy and U. S. R. Murty, "Graph Theory," Graduate Texts in Mathematics, 244. Springer, New York, 2008.
doi: 10.1007/978-1-84628-970-5. |
[4] |
I. Cavarretta and C. O'Sullivan, The mechanics of rigid irregular particles subject to uniaxial compression, Géotechnique, 62 (2012), 681-692. |
[5] |
J. Duran, "Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials," Springer-Verlag, New York, 2000. |
[6] |
J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problem, Journal of the Association for Computing Machinery, 19 (1972), 248-264. |
[7] |
A. Garg and R. Tamassia, A new minimum cost flow algorithm with applications to graph drawing, Graph Drawing, 1190 (1997), 201-216. |
[8] |
M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270.
doi: 10.3934/jimo.2008.4.247. |
[9] |
F. S. Hillier and G. J. Lieberman, "Introduction to Operations Research," McGraw-Hill, 2005. |
[10] |
D. Jungnickel, "Graphs, Networks and Algorithms," Third edition. Algorithms and Computation in Mathematics, 5. Springer, Berlin, 2008.
doi: 10.1007/978-3-540-72780-4. |
[11] |
Q. Lin and A. Tordesillas, Granular rheology: Fine tuned for optimal efficiency? Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics, (2012). |
[12] |
R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica J. IFAC, 45 (2009), 2250-2257.
doi: 10.1016/j.automatica.2009.05.029. |
[13] |
H. B. Mühlhaus and I. Vardoulakis, The thickness of shear bands in granular materials, Géotechnique, 37 (1987), 271-283. |
[14] |
M. Oda and H. Kazama, Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Géotechnique, 48 (1998), 465-481. |
[15] |
M. Oda, J. Konishi and S. Nemat-Nasser, Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling, Mechanics of Materials, 1 (1982), 269-283. |
[16] |
A. Ord and B. E. Hobbs, Fracture pattern formation in frictional, cohesive, granular material, Philosophical Transactions of the Royal Society A, 368 (2010), 95-118. |
[17] |
J. Paavilainen and J. Tuhkuri, Pressure distributions and force chains during simulated ice rubbling against sloped structures, Cold Regions Science and Technology, 85 (2013), 157-174. |
[18] |
J. M. Padbidri, C. M. Hansen, S. D. Mesarovic and B. Muhunthan, Length scale for transmission of rotations in dense granular materials, Journal of Applied Mechanics, 79 (2012), 031011. |
[19] |
F. Radjai, D. E. Wolf, M. Jean and J. J. Moreau, Bimodal character of stress transmission in granular packings, Physical Review Letters, 80 (1998), 61-64. |
[20] |
A. L. Rechenmacher, S. Abedi, O. Chupin and A. D. Orlando, Characterization of mesoscale instabilities in localized granular shear using digital image correlation, Acta Geotechnica, 6 (2011), 205-217. |
[21] |
A. Tordesillas, Force chain buckling, unjamming transitions and shear banding in dense granular assemblies, Philosophical Magazine, 87 (2007), 4987-5016. |
[22] |
A. Tordesillas, A. Cramer and D. M. Walker, Minimum cut and shear bands, Powders & Grains AIP Conference Proceedings 1542 (2013), 507-510. |
[23] |
A. Tordesillas, Q. Lin, J. Zhang, R. P. Behringer and J. Shi, Structural stability and jamming of self-organized cluster conformations in dense granular materials, Journal of the Mechanics and Physics of Solids, 59 (2011), 265-296. |
[24] |
A. Tordesillas, D. M. Walker, E. Andò and G. Viggiani, Revisiting localised deformation in sand with complex systems, Proceedings of the Royal Society of London Series A, (2013). |
[25] |
A. Tordesillas, D. M. Walker, G. Froyland, J. Zhang and R. P. Behringer, Transition dynamics and magic-number-like behavior of frictional granular clusters, Physical Review E, 86 (2012), 011306. |
[26] |
A. Tordesillas, D. M. Walker and Q. Lin, Force cycles and force chains, Physical Review E, 81 (2010), 011302. |
[27] |
D. M. Walker, A. Tordesillas, S. Pucilowski, Q. Lin, A. L. Rechenmacher and S. Abedi, Analysis of grain-scale measurements of sand using kinematical complex networks, International Journal of Bifurcation and Chaos, 22 (2012), 1230042.
doi: 10.1142/S021812741230042X. |
[28] |
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705-718.
doi: 10.3934/jimo.2009.5.705. |
[29] |
Y. Zhao and M. A. Stadtherr, Rigorous global optimization for dynamic systems subject to inequality path constraints, Industrial and Engineering Chemistry Research, 50 (2011), 12678-12693. |
show all references
References:
[1] |
R. Arévalo, I. Zuriguel and D. Maza, Topology of the force network in the jamming transition of an isotropically compressed granular packing, Physical Review E, 81 (2010), 041302. |
[2] |
D. P. Bertsekas, "Network Optimization: Continuous and Discrete Models (Optimization, Computation, and Control)," Athena Scientific, 1998. |
[3] |
J. A. Bondy and U. S. R. Murty, "Graph Theory," Graduate Texts in Mathematics, 244. Springer, New York, 2008.
doi: 10.1007/978-1-84628-970-5. |
[4] |
I. Cavarretta and C. O'Sullivan, The mechanics of rigid irregular particles subject to uniaxial compression, Géotechnique, 62 (2012), 681-692. |
[5] |
J. Duran, "Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials," Springer-Verlag, New York, 2000. |
[6] |
J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problem, Journal of the Association for Computing Machinery, 19 (1972), 248-264. |
[7] |
A. Garg and R. Tamassia, A new minimum cost flow algorithm with applications to graph drawing, Graph Drawing, 1190 (1997), 201-216. |
[8] |
M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, Journal of Industrial and Management Optimization, 4 (2008), 247-270.
doi: 10.3934/jimo.2008.4.247. |
[9] |
F. S. Hillier and G. J. Lieberman, "Introduction to Operations Research," McGraw-Hill, 2005. |
[10] |
D. Jungnickel, "Graphs, Networks and Algorithms," Third edition. Algorithms and Computation in Mathematics, 5. Springer, Berlin, 2008.
doi: 10.1007/978-3-540-72780-4. |
[11] |
Q. Lin and A. Tordesillas, Granular rheology: Fine tuned for optimal efficiency? Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics, (2012). |
[12] |
R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica J. IFAC, 45 (2009), 2250-2257.
doi: 10.1016/j.automatica.2009.05.029. |
[13] |
H. B. Mühlhaus and I. Vardoulakis, The thickness of shear bands in granular materials, Géotechnique, 37 (1987), 271-283. |
[14] |
M. Oda and H. Kazama, Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Géotechnique, 48 (1998), 465-481. |
[15] |
M. Oda, J. Konishi and S. Nemat-Nasser, Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling, Mechanics of Materials, 1 (1982), 269-283. |
[16] |
A. Ord and B. E. Hobbs, Fracture pattern formation in frictional, cohesive, granular material, Philosophical Transactions of the Royal Society A, 368 (2010), 95-118. |
[17] |
J. Paavilainen and J. Tuhkuri, Pressure distributions and force chains during simulated ice rubbling against sloped structures, Cold Regions Science and Technology, 85 (2013), 157-174. |
[18] |
J. M. Padbidri, C. M. Hansen, S. D. Mesarovic and B. Muhunthan, Length scale for transmission of rotations in dense granular materials, Journal of Applied Mechanics, 79 (2012), 031011. |
[19] |
F. Radjai, D. E. Wolf, M. Jean and J. J. Moreau, Bimodal character of stress transmission in granular packings, Physical Review Letters, 80 (1998), 61-64. |
[20] |
A. L. Rechenmacher, S. Abedi, O. Chupin and A. D. Orlando, Characterization of mesoscale instabilities in localized granular shear using digital image correlation, Acta Geotechnica, 6 (2011), 205-217. |
[21] |
A. Tordesillas, Force chain buckling, unjamming transitions and shear banding in dense granular assemblies, Philosophical Magazine, 87 (2007), 4987-5016. |
[22] |
A. Tordesillas, A. Cramer and D. M. Walker, Minimum cut and shear bands, Powders & Grains AIP Conference Proceedings 1542 (2013), 507-510. |
[23] |
A. Tordesillas, Q. Lin, J. Zhang, R. P. Behringer and J. Shi, Structural stability and jamming of self-organized cluster conformations in dense granular materials, Journal of the Mechanics and Physics of Solids, 59 (2011), 265-296. |
[24] |
A. Tordesillas, D. M. Walker, E. Andò and G. Viggiani, Revisiting localised deformation in sand with complex systems, Proceedings of the Royal Society of London Series A, (2013). |
[25] |
A. Tordesillas, D. M. Walker, G. Froyland, J. Zhang and R. P. Behringer, Transition dynamics and magic-number-like behavior of frictional granular clusters, Physical Review E, 86 (2012), 011306. |
[26] |
A. Tordesillas, D. M. Walker and Q. Lin, Force cycles and force chains, Physical Review E, 81 (2010), 011302. |
[27] |
D. M. Walker, A. Tordesillas, S. Pucilowski, Q. Lin, A. L. Rechenmacher and S. Abedi, Analysis of grain-scale measurements of sand using kinematical complex networks, International Journal of Bifurcation and Chaos, 22 (2012), 1230042.
doi: 10.1142/S021812741230042X. |
[28] |
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Time delayed optimal control problems with multiple characteristic time points: Computation and industrial applications, Journal of Industrial and Management Optimization, 5 (2009), 705-718.
doi: 10.3934/jimo.2009.5.705. |
[29] |
Y. Zhao and M. A. Stadtherr, Rigorous global optimization for dynamic systems subject to inequality path constraints, Industrial and Engineering Chemistry Research, 50 (2011), 12678-12693. |
[1] |
I-Lin Wang, Shiou-Jie Lin. A network simplex algorithm for solving the minimum distribution cost problem. Journal of Industrial and Management Optimization, 2009, 5 (4) : 929-950. doi: 10.3934/jimo.2009.5.929 |
[2] |
K. A. Ariyawansa, Leonid Berlyand, Alexander Panchenko. A network model of geometrically constrained deformations of granular materials. Networks and Heterogeneous Media, 2008, 3 (1) : 125-148. doi: 10.3934/nhm.2008.3.125 |
[3] |
José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018 |
[4] |
Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487 |
[5] |
R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial and Management Optimization, 2006, 2 (3) : 237-254. doi: 10.3934/jimo.2006.2.237 |
[6] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[7] |
Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347 |
[8] |
David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Edge number, minimum degree, maximum independent set, radius and diameter in twin-free graphs. Advances in Mathematics of Communications, 2009, 3 (1) : 97-114. doi: 10.3934/amc.2009.3.97 |
[9] |
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029 |
[10] |
Romar dela Cruz, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. On the minimum number of minimal codewords. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020130 |
[11] |
Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic and Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007 |
[12] |
Victor Berdichevsky. Distribution of minimum values of stochastic functionals. Networks and Heterogeneous Media, 2008, 3 (3) : 437-460. doi: 10.3934/nhm.2008.3.437 |
[13] |
Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 |
[14] |
Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control and Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51 |
[15] |
Haolei Wang, Lei Zhang. Energy minimization and preconditioning in the simulation of athermal granular materials in two dimensions. Electronic Research Archive, 2020, 28 (1) : 405-421. doi: 10.3934/era.2020023 |
[16] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[17] |
Uwe Helmke, Michael Schönlein. Minimum sensitivity realizations of networks of linear systems. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 241-262. doi: 10.3934/naco.2016010 |
[18] |
Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720 |
[19] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[20] |
Monica Motta. Minimum time problem with impulsive and ordinary controls. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5781-5809. doi: 10.3934/dcds.2018252 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]