April  2014, 10(2): 363-381. doi: 10.3934/jimo.2014.10.363

Fractional order optimal control problems with free terminal time

1. 

CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal, Portugal, Portugal

Received  December 2012 Revised  July 2013 Published  October 2013

We consider fractional order optimal control problems in which the dynamic control system involves integer and fractional order derivatives and the terminal time is free. Necessary conditions for a state/control/terminal-time triplet to be optimal are obtained. Situations with constraints present at the end time are also considered. Under appropriate assumptions, it is shown that the obtained necessary optimality conditions become sufficient. Numerical methods to solve the problems are presented, and some computational simulations are discussed in detail.
Citation: Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres. Fractional order optimal control problems with free terminal time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 363-381. doi: 10.3934/jimo.2014.10.363
References:
[1]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems,, Nonlinear Dynam., 38 (2004), 323.  doi: 10.1007/s11071-004-3764-6.  Google Scholar

[2]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives,, J. Phys. A, 40 (2007), 6287.  doi: 10.1088/1751-8113/40/24/003.  Google Scholar

[3]

O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems,, J. Vib. Control, 14 (2008), 1291.  doi: 10.1177/1077546307087451.  Google Scholar

[4]

O. P. Agrawal, O. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables,, J. Vib. Control, 16 (2010), 1967.  doi: 10.1177/1077546309353361.  Google Scholar

[5]

T. M. Atanackovic and B. Stankovic, On a numerical scheme for solving differential equations of fractional order,, Mech. Res. Comm., 35 (2008), 429.  doi: 10.1016/j.mechrescom.2008.05.003.  Google Scholar

[6]

S. N. Avvakumov and Yu. N. Kiselev, Boundary value problem for ordinary differential equations with applications to optimal control,, in Spectral and Evolution Problems, (1999), 147.   Google Scholar

[7]

A. C. Chiang, Elements of Dynamic Optimization,, McGraw-Hill, (1992).   Google Scholar

[8]

G. S. F. Frederico and D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem,, Int. Math. Forum, 3 (2008), 479.   Google Scholar

[9]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory,, Nonlinear Dynam., 53 (2008), 215.  doi: 10.1007/s11071-007-9309-z.  Google Scholar

[10]

Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems,, Struct. Multidiscip. Optim., 38 (2009), 571.  doi: 10.1007/s00158-008-0307-7.  Google Scholar

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006).   Google Scholar

[12]

D. E. Kirk, Optimal Control Theory: An Introduction,, Prentice-Hall Inc., (1970).   Google Scholar

[13]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pac. J. Optim., 7 (2011), 63.   Google Scholar

[14]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependent stopping criteria,, Automatica J. IFAC, 48 (2012), 2116.  doi: 10.1016/j.automatica.2012.06.055.  Google Scholar

[15]

S. Liu, Q. Hu and Y. Xu, Optimal inventory control with fixed ordering cost for selling by Internet auctions,, J. Ind. Manag. Optim., 8 (2012), 19.  doi: 10.3934/jimo.2012.8.19.  Google Scholar

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations,, Imperial College Press, (2012).   Google Scholar

[17]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication, (1993).   Google Scholar

[18]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative,, Carpathian J. Math., 26 (2010), 210.   Google Scholar

[19]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems,, Signal Process., 91 (2011), 379.  doi: 10.1016/j.sigpro.2010.07.016.  Google Scholar

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative,, Numer. Funct. Anal. Optim., 33 (2012), 301.  doi: 10.1080/01630563.2011.647197.  Google Scholar

[21]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives,, Comput. Math. Appl., 64 (2012), 3090.  doi: 10.1016/j.camwa.2012.01.068.  Google Scholar

[22]

S. Pooseh, R. Almeida and D. F. M. Torres, Numerical approximations of fractional derivatives with applications,, Asian J. Control, 15 (2013), 698.  doi: 10.1002/asjc.617.  Google Scholar

[23]

C. Tricaud and Y. Chen, An approximate method for numerically solving fractional order optimal control problems of general form,, Comput. Math. Appl., 59 (2010), 1644.  doi: 10.1016/j.camwa.2009.08.006.  Google Scholar

[24]

C. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics,, Int. J. Differ. Equ., 2010 (2010).  doi: 10.1155/2010/461048.  Google Scholar

show all references

References:
[1]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems,, Nonlinear Dynam., 38 (2004), 323.  doi: 10.1007/s11071-004-3764-6.  Google Scholar

[2]

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives,, J. Phys. A, 40 (2007), 6287.  doi: 10.1088/1751-8113/40/24/003.  Google Scholar

[3]

O. P. Agrawal, A formulation and numerical scheme for fractional optimal control problems,, J. Vib. Control, 14 (2008), 1291.  doi: 10.1177/1077546307087451.  Google Scholar

[4]

O. P. Agrawal, O. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables,, J. Vib. Control, 16 (2010), 1967.  doi: 10.1177/1077546309353361.  Google Scholar

[5]

T. M. Atanackovic and B. Stankovic, On a numerical scheme for solving differential equations of fractional order,, Mech. Res. Comm., 35 (2008), 429.  doi: 10.1016/j.mechrescom.2008.05.003.  Google Scholar

[6]

S. N. Avvakumov and Yu. N. Kiselev, Boundary value problem for ordinary differential equations with applications to optimal control,, in Spectral and Evolution Problems, (1999), 147.   Google Scholar

[7]

A. C. Chiang, Elements of Dynamic Optimization,, McGraw-Hill, (1992).   Google Scholar

[8]

G. S. F. Frederico and D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem,, Int. Math. Forum, 3 (2008), 479.   Google Scholar

[9]

G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory,, Nonlinear Dynam., 53 (2008), 215.  doi: 10.1007/s11071-007-9309-z.  Google Scholar

[10]

Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems,, Struct. Multidiscip. Optim., 38 (2009), 571.  doi: 10.1007/s00158-008-0307-7.  Google Scholar

[11]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North-Holland Mathematics Studies, (2006).   Google Scholar

[12]

D. E. Kirk, Optimal Control Theory: An Introduction,, Prentice-Hall Inc., (1970).   Google Scholar

[13]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for a class of free terminal time optimal control problems,, Pac. J. Optim., 7 (2011), 63.   Google Scholar

[14]

Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, Optimal control computation for nonlinear systems with state-dependent stopping criteria,, Automatica J. IFAC, 48 (2012), 2116.  doi: 10.1016/j.automatica.2012.06.055.  Google Scholar

[15]

S. Liu, Q. Hu and Y. Xu, Optimal inventory control with fixed ordering cost for selling by Internet auctions,, J. Ind. Manag. Optim., 8 (2012), 19.  doi: 10.3934/jimo.2012.8.19.  Google Scholar

[16]

A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations,, Imperial College Press, (2012).   Google Scholar

[17]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations,, A Wiley-Interscience Publication, (1993).   Google Scholar

[18]

D. Mozyrska and D. F. M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative,, Carpathian J. Math., 26 (2010), 210.   Google Scholar

[19]

D. Mozyrska and D. F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems,, Signal Process., 91 (2011), 379.  doi: 10.1016/j.sigpro.2010.07.016.  Google Scholar

[20]

S. Pooseh, R. Almeida and D. F. M. Torres, Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative,, Numer. Funct. Anal. Optim., 33 (2012), 301.  doi: 10.1080/01630563.2011.647197.  Google Scholar

[21]

S. Pooseh, R. Almeida and D. F. M. Torres, Approximation of fractional integrals by means of derivatives,, Comput. Math. Appl., 64 (2012), 3090.  doi: 10.1016/j.camwa.2012.01.068.  Google Scholar

[22]

S. Pooseh, R. Almeida and D. F. M. Torres, Numerical approximations of fractional derivatives with applications,, Asian J. Control, 15 (2013), 698.  doi: 10.1002/asjc.617.  Google Scholar

[23]

C. Tricaud and Y. Chen, An approximate method for numerically solving fractional order optimal control problems of general form,, Comput. Math. Appl., 59 (2010), 1644.  doi: 10.1016/j.camwa.2009.08.006.  Google Scholar

[24]

C. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics,, Int. J. Differ. Equ., 2010 (2010).  doi: 10.1155/2010/461048.  Google Scholar

[1]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[2]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[3]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[4]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[7]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[8]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[11]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[14]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[15]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[16]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[17]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[18]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[19]

Andreas Kreuml. The anisotropic fractional isoperimetric problem with respect to unconditional unit balls. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020290

[20]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (421)
  • HTML views (0)
  • Cited by (45)

[Back to Top]