-
Previous Article
The FIFO single-server queue with disasters and multiple Markovian arrival streams
- JIMO Home
- This Issue
-
Next Article
Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding
Catastrophe equity put options under stochastic volatility and catastrophe-dependent jumps
1. | School of Management, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 130-701 |
2. | Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713 |
3. | Department of Business Administration, Yong In University, 134 Yongindaehak-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-714, South Korea |
References:
[1] |
G. Bakshi, C. Cao and Z. Chen, Empirical performance of alternative option pricing models, Journal of Finance, 52 (1997), 2003-2049. |
[2] |
D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in Deutschemark options, Review of Financial Studies, 9 (1996), 69-108. |
[3] |
F. Black and S. Myron, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-659.
doi: 10.1086/260062. |
[4] |
L.-F. Chang and M.-W. Hung, Analytical valuation of catastrocphe equity options with negative exponential jumps, Insurance: Mathematics and Economics, 44 (2009), 59-69.
doi: 10.1016/j.insmatheco.2008.09.009. |
[5] |
R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues, Quantitative Finance, 1 (2001), 223-236. |
[6] |
J. C. Cox and S. A. Ross, The valuation of options for alternative stochastic processes, Journal of Financial Economics, 3 (1976), 145-166.
doi: 10.1016/0304-405X(76)90023-4. |
[7] |
H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.
doi: 10.1080/10920277.1998.10595671. |
[8] |
S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[9] |
J. Hull and A. White, The pricing of options with stochastic volatilities, Journal of Finance, 42 (1987), 281-300. |
[10] |
S. Jaimungal and T. Wang, Catastrophe options with stochastic interest rates and compound Poisson losses, Insurance: Mathematics and Economics, 38 (2006), 469-483.
doi: 10.1016/j.insmatheco.2005.11.008. |
[11] |
B. Kim, J. Kim, K.-S. Moon and I.-S. Wee, Valuation of power options under Heston's stochastic volatility model, Journal of Economic Dynamics and Control, 36 (2012), 1796-1813.
doi: 10.1016/j.jedc.2012.05.005. |
[12] |
X. S. Lin and T. Wang, Pricing perpetual American catastrophe put options: A penalty function approach, Insurance: Mathematics and Economics, 44 (2009), 287-295.
doi: 10.1016/j.insmatheco.2008.04.002. |
[13] |
D. Madan, P. Carr and E. Chang, The variance gamma process and option pricing, European Finance Review, 2 (1998), 79-105.
doi: 10.1023/A:1009703431535. |
[14] |
R. Merton, Option pricing when the underlying stock returns are discontinuous, Journal of Financial Economics, 4 (1976), 125-144.
doi: 10.1016/0304-405X(76)90022-2. |
[15] |
L. Scott, Pricing stock options in a jump diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods, Mathematical Finance, 7 (1997), 413-426.
doi: 10.1111/1467-9965.00039. |
[16] |
E. Stein and J. Stein, Stock price distributions with stochastic volatility, Review of Financial Studies, 4 (1991), 727-752.
doi: 10.1093/rfs/4.4.727. |
show all references
References:
[1] |
G. Bakshi, C. Cao and Z. Chen, Empirical performance of alternative option pricing models, Journal of Finance, 52 (1997), 2003-2049. |
[2] |
D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in Deutschemark options, Review of Financial Studies, 9 (1996), 69-108. |
[3] |
F. Black and S. Myron, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-659.
doi: 10.1086/260062. |
[4] |
L.-F. Chang and M.-W. Hung, Analytical valuation of catastrocphe equity options with negative exponential jumps, Insurance: Mathematics and Economics, 44 (2009), 59-69.
doi: 10.1016/j.insmatheco.2008.09.009. |
[5] |
R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues, Quantitative Finance, 1 (2001), 223-236. |
[6] |
J. C. Cox and S. A. Ross, The valuation of options for alternative stochastic processes, Journal of Financial Economics, 3 (1976), 145-166.
doi: 10.1016/0304-405X(76)90023-4. |
[7] |
H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.
doi: 10.1080/10920277.1998.10595671. |
[8] |
S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[9] |
J. Hull and A. White, The pricing of options with stochastic volatilities, Journal of Finance, 42 (1987), 281-300. |
[10] |
S. Jaimungal and T. Wang, Catastrophe options with stochastic interest rates and compound Poisson losses, Insurance: Mathematics and Economics, 38 (2006), 469-483.
doi: 10.1016/j.insmatheco.2005.11.008. |
[11] |
B. Kim, J. Kim, K.-S. Moon and I.-S. Wee, Valuation of power options under Heston's stochastic volatility model, Journal of Economic Dynamics and Control, 36 (2012), 1796-1813.
doi: 10.1016/j.jedc.2012.05.005. |
[12] |
X. S. Lin and T. Wang, Pricing perpetual American catastrophe put options: A penalty function approach, Insurance: Mathematics and Economics, 44 (2009), 287-295.
doi: 10.1016/j.insmatheco.2008.04.002. |
[13] |
D. Madan, P. Carr and E. Chang, The variance gamma process and option pricing, European Finance Review, 2 (1998), 79-105.
doi: 10.1023/A:1009703431535. |
[14] |
R. Merton, Option pricing when the underlying stock returns are discontinuous, Journal of Financial Economics, 4 (1976), 125-144.
doi: 10.1016/0304-405X(76)90022-2. |
[15] |
L. Scott, Pricing stock options in a jump diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods, Mathematical Finance, 7 (1997), 413-426.
doi: 10.1111/1467-9965.00039. |
[16] |
E. Stein and J. Stein, Stock price distributions with stochastic volatility, Review of Financial Studies, 4 (1991), 727-752.
doi: 10.1093/rfs/4.4.727. |
[1] |
Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2077-2094. doi: 10.3934/jimo.2021057 |
[2] |
Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005 |
[3] |
Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100 |
[4] |
Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072 |
[5] |
Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial and Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783 |
[6] |
Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237 |
[7] |
Xingchun Wang. Pricing path-dependent options under the Hawkes jump diffusion process. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022024 |
[8] |
Isabelle Kuhwald, Ilya Pavlyukevich. Bistable behaviour of a jump-diffusion driven by a periodic stable-like additive process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3175-3190. doi: 10.3934/dcdsb.2016092 |
[9] |
Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298 |
[10] |
Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial and Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044 |
[11] |
Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control and Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025 |
[12] |
Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control and Related Fields, 2022, 12 (2) : 371-404. doi: 10.3934/mcrf.2021026 |
[13] |
Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177 |
[14] |
Donny Citra Lesmana, Song Wang. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1793-1813. doi: 10.3934/jimo.2017019 |
[15] |
Tak Kuen Siu, Howell Tong, Hailiang Yang. Option pricing under threshold autoregressive models by threshold Esscher transform. Journal of Industrial and Management Optimization, 2006, 2 (2) : 177-197. doi: 10.3934/jimo.2006.2.177 |
[16] |
Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial and Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043 |
[17] |
Xin Zhang, Hui Meng, Jie Xiong, Yang Shen. Robust optimal investment and reinsurance of an insurer under Jump-diffusion models. Mathematical Control and Related Fields, 2019, 9 (1) : 59-76. doi: 10.3934/mcrf.2019003 |
[18] |
Kunyang Song, Yuping Song, Hanchao Wang. Threshold reweighted Nadaraya–Watson estimation of jump-diffusion models. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 31-44. doi: 10.3934/puqr.2022003 |
[19] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial and Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[20] |
Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control and Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]