January  2014, 10(1): 41-55. doi: 10.3934/jimo.2014.10.41

Catastrophe equity put options under stochastic volatility and catastrophe-dependent jumps

1. 

School of Management, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, 130-701

2. 

Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713

3. 

Department of Business Administration, Yong In University, 134 Yongindaehak-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-714, South Korea

Received  September 2012 Revised  July 2013 Published  October 2013

This paper develops a catastrophe equity put (CatEPut) option model under realistic assumptions. To reflect the phenomena of real data, we adopt the following assumptions. First, following the reasoning in Lin and Wang [12], we assume that the loss index follows a compound Poisson process with jumps of a mixture of Erlangs. Second, the volatility of stock return is assumed to be stochastic as in Heston [8]. Under the assumptions, we derives a pricing formula for CatEPut options. Numerical examples are given to insist that the pricing formula can be easily implemented numerically. We also confirm the validity and accuracy of implementation of the pricing formula by comparing the numerical results obtained by the pricing formula with those obtained by the Monte Carlo simulation.
Citation: Hwa-Sung Kim, Bara Kim, Jerim Kim. Catastrophe equity put options under stochastic volatility and catastrophe-dependent jumps. Journal of Industrial and Management Optimization, 2014, 10 (1) : 41-55. doi: 10.3934/jimo.2014.10.41
References:
[1]

G. Bakshi, C. Cao and Z. Chen, Empirical performance of alternative option pricing models, Journal of Finance, 52 (1997), 2003-2049.

[2]

D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in Deutschemark options, Review of Financial Studies, 9 (1996), 69-108.

[3]

F. Black and S. Myron, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-659. doi: 10.1086/260062.

[4]

L.-F. Chang and M.-W. Hung, Analytical valuation of catastrocphe equity options with negative exponential jumps, Insurance: Mathematics and Economics, 44 (2009), 59-69. doi: 10.1016/j.insmatheco.2008.09.009.

[5]

R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues, Quantitative Finance, 1 (2001), 223-236.

[6]

J. C. Cox and S. A. Ross, The valuation of options for alternative stochastic processes, Journal of Financial Economics, 3 (1976), 145-166. doi: 10.1016/0304-405X(76)90023-4.

[7]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78. doi: 10.1080/10920277.1998.10595671.

[8]

S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 6 (1993), 327-343. doi: 10.1093/rfs/6.2.327.

[9]

J. Hull and A. White, The pricing of options with stochastic volatilities, Journal of Finance, 42 (1987), 281-300.

[10]

S. Jaimungal and T. Wang, Catastrophe options with stochastic interest rates and compound Poisson losses, Insurance: Mathematics and Economics, 38 (2006), 469-483. doi: 10.1016/j.insmatheco.2005.11.008.

[11]

B. Kim, J. Kim, K.-S. Moon and I.-S. Wee, Valuation of power options under Heston's stochastic volatility model, Journal of Economic Dynamics and Control, 36 (2012), 1796-1813. doi: 10.1016/j.jedc.2012.05.005.

[12]

X. S. Lin and T. Wang, Pricing perpetual American catastrophe put options: A penalty function approach, Insurance: Mathematics and Economics, 44 (2009), 287-295. doi: 10.1016/j.insmatheco.2008.04.002.

[13]

D. Madan, P. Carr and E. Chang, The variance gamma process and option pricing, European Finance Review, 2 (1998), 79-105. doi: 10.1023/A:1009703431535.

[14]

R. Merton, Option pricing when the underlying stock returns are discontinuous, Journal of Financial Economics, 4 (1976), 125-144. doi: 10.1016/0304-405X(76)90022-2.

[15]

L. Scott, Pricing stock options in a jump diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods, Mathematical Finance, 7 (1997), 413-426. doi: 10.1111/1467-9965.00039.

[16]

E. Stein and J. Stein, Stock price distributions with stochastic volatility, Review of Financial Studies, 4 (1991), 727-752. doi: 10.1093/rfs/4.4.727.

show all references

References:
[1]

G. Bakshi, C. Cao and Z. Chen, Empirical performance of alternative option pricing models, Journal of Finance, 52 (1997), 2003-2049.

[2]

D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in Deutschemark options, Review of Financial Studies, 9 (1996), 69-108.

[3]

F. Black and S. Myron, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-659. doi: 10.1086/260062.

[4]

L.-F. Chang and M.-W. Hung, Analytical valuation of catastrocphe equity options with negative exponential jumps, Insurance: Mathematics and Economics, 44 (2009), 59-69. doi: 10.1016/j.insmatheco.2008.09.009.

[5]

R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues, Quantitative Finance, 1 (2001), 223-236.

[6]

J. C. Cox and S. A. Ross, The valuation of options for alternative stochastic processes, Journal of Financial Economics, 3 (1976), 145-166. doi: 10.1016/0304-405X(76)90023-4.

[7]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78. doi: 10.1080/10920277.1998.10595671.

[8]

S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 6 (1993), 327-343. doi: 10.1093/rfs/6.2.327.

[9]

J. Hull and A. White, The pricing of options with stochastic volatilities, Journal of Finance, 42 (1987), 281-300.

[10]

S. Jaimungal and T. Wang, Catastrophe options with stochastic interest rates and compound Poisson losses, Insurance: Mathematics and Economics, 38 (2006), 469-483. doi: 10.1016/j.insmatheco.2005.11.008.

[11]

B. Kim, J. Kim, K.-S. Moon and I.-S. Wee, Valuation of power options under Heston's stochastic volatility model, Journal of Economic Dynamics and Control, 36 (2012), 1796-1813. doi: 10.1016/j.jedc.2012.05.005.

[12]

X. S. Lin and T. Wang, Pricing perpetual American catastrophe put options: A penalty function approach, Insurance: Mathematics and Economics, 44 (2009), 287-295. doi: 10.1016/j.insmatheco.2008.04.002.

[13]

D. Madan, P. Carr and E. Chang, The variance gamma process and option pricing, European Finance Review, 2 (1998), 79-105. doi: 10.1023/A:1009703431535.

[14]

R. Merton, Option pricing when the underlying stock returns are discontinuous, Journal of Financial Economics, 4 (1976), 125-144. doi: 10.1016/0304-405X(76)90022-2.

[15]

L. Scott, Pricing stock options in a jump diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods, Mathematical Finance, 7 (1997), 413-426. doi: 10.1111/1467-9965.00039.

[16]

E. Stein and J. Stein, Stock price distributions with stochastic volatility, Review of Financial Studies, 4 (1991), 727-752. doi: 10.1093/rfs/4.4.727.

[1]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2077-2094. doi: 10.3934/jimo.2021057

[2]

Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005

[3]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[4]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

[5]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial and Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[6]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[7]

Xingchun Wang. Pricing path-dependent options under the Hawkes jump diffusion process. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022024

[8]

Isabelle Kuhwald, Ilya Pavlyukevich. Bistable behaviour of a jump-diffusion driven by a periodic stable-like additive process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3175-3190. doi: 10.3934/dcdsb.2016092

[9]

Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298

[10]

Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial and Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044

[11]

Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control and Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025

[12]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control and Related Fields, 2022, 12 (2) : 371-404. doi: 10.3934/mcrf.2021026

[13]

Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177

[14]

Donny Citra Lesmana, Song Wang. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1793-1813. doi: 10.3934/jimo.2017019

[15]

Tak Kuen Siu, Howell Tong, Hailiang Yang. Option pricing under threshold autoregressive models by threshold Esscher transform. Journal of Industrial and Management Optimization, 2006, 2 (2) : 177-197. doi: 10.3934/jimo.2006.2.177

[16]

Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial and Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043

[17]

Xin Zhang, Hui Meng, Jie Xiong, Yang Shen. Robust optimal investment and reinsurance of an insurer under Jump-diffusion models. Mathematical Control and Related Fields, 2019, 9 (1) : 59-76. doi: 10.3934/mcrf.2019003

[18]

Kunyang Song, Yuping Song, Hanchao Wang. Threshold reweighted Nadaraya–Watson estimation of jump-diffusion models. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 31-44. doi: 10.3934/puqr.2022003

[19]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial and Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[20]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control and Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (165)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]