April  2014, 10(2): 443-460. doi: 10.3934/jimo.2014.10.443

Computation of bang-bang and singular controls in collision avoidance

1. 

Institute of Computational and Applied Mathematics, University of Muenster, Einsteinstr. 62, D-48149 Muenster, Germany

2. 

CSIRO Computational Informatics, Locked Bag 17, North Ryde NSW 1670, Australia

3. 

CSIRO Computational Informatics, GPO Box 664, Canberra ACT 2601, Australia

Received  November 2012 Revised  August 2013 Published  October 2013

We study optimal cooperative collision avoidance strategies for two participants in a planar close proximity encounter. Previous research focused on special cases of this problem and showed that bang-bang strategies without switching are optimal in most situations, while singular controls only appear for the case of participants with unequal linear speeds under certain conditions. This paper extends the earlier analyses to a general case of a coplanar close proximity encounter, for which both parameters of the problem may take arbitrary admissible values. For such a case, we present a theoretical and numerical study of the structure of optimal controls. We prove that both controls can not be singular simultaneously and that the only possible singular control is a zero control. We derive formulas for the singular surfaces and verify that sufficient conditions hold for the computed extremal solutions. We identify different types of structural changes of the control strategies and show how the control structure changes with the change in the model parameters and initial conditions.
Citation: Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial & Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443
References:
[1]

M. S. Aronna, J. F. Bonnans, A. V. Dmitruk and P. A. Lotito, Quadratic conditions for bang-singular extremals,, Numer. Algebra Control Optim., 2 (2012), 511.  doi: 10.3934/naco.2012.2.511.  Google Scholar

[2]

M. S. Aronna, Second Order Analysis of Optimal Control Problems with Singular Arcs. Optimality Conditions and Shooting Algorithm,, Ph.D thesis, (2011).   Google Scholar

[3]

C. Büskens, Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen,, Ph.D thesis, (1998).   Google Scholar

[4]

C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control. SQP-based direct discretization methods for practical optimal control problems,, J. Comput. Appl. Math., 120 (2000), 85.  doi: 10.1016/S0377-0427(00)00305-8.  Google Scholar

[5]

C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems,, in Online Optimization of Large Scale Systems (eds. M. Gr\, (2001), 3.   Google Scholar

[6]

R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming,, Duxbury Press, (1993).   Google Scholar

[7]

M. Hestens, Calculus of Variations and Optimal Control Theory,, John Wiley & Sons, (1966).   Google Scholar

[8]

A. J. Krener, The high order maximum principle and its application to singular extremals,, SIAM J. Control and Optimization, 15 (1977), 256.  doi: 10.1137/0315019.  Google Scholar

[9]

H. Maurer, Numerical solution of singular control problems using multiple shooting methods,, J. Optimization Theory and Applications, 18 (1976), 235.  doi: 10.1007/BF00935706.  Google Scholar

[10]

H. Maurer, C. Büskens, J.-H. R. Kim and Y. Kaya, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls,, Optimal Control Appl. Methods, 26 (2005), 129.  doi: 10.1002/oca.756.  Google Scholar

[11]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: The Riccati approach,, SIAM J. Control and Optim., 41 (2002), 380.  doi: 10.1137/S0363012900377419.  Google Scholar

[12]

H. Maurer, T. Tarnopolskaya and N. L. Fulton, Singular controls in optimal collision avoidance for participants with unequal linear speeds,, ANZIAM J., 53 (2012).   Google Scholar

[13]

H. Maurer, T. Tarnopolskaya and N. L. Fulton, Optimal bang-bang and singular controls in collision avoidance for participants with unequal linear speeds,, in 51st IEEE Conference on Decision and Control (CDC), (2012), 7697.  doi: 10.1109/CDC.2012.6426792.  Google Scholar

[14]

A. W. Merz, Optimal aircraft collision avoidance,, in Proceedings of the Joint Automatic Control Conference, (1973), 15.   Google Scholar

[15]

A. W. Merz, Optimal evasive manoeuvres in maritime collision avoidance,, Navigation, 20 (1973), 144.   Google Scholar

[16]

H. J. Oberle, Numerical computation of singular control functions in trajectory optimization problems,, J. of Guidance, 13 (1990), 153.  doi: 10.2514/3.20529.  Google Scholar

[17]

N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control. Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control,, Advances in Control and Design, (2012).  doi: 10.1137/1.9781611972368.  Google Scholar

[18]

N. P. Osmolovskii and H. Maurer, Equivalence of second order optimality conditions for bang-bang control problems. I. Main results,, Control and Cybernetics, 34 (2005), 927.   Google Scholar

[19]

L. S. Pontryagin, W. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Wiley, (1965).   Google Scholar

[20]

T. Tarnopolskaya and N. L. Fulton, Optimal cooperative collision avoidance strategy for coplanar encounter: Merz's solution revisited,, J. Optim. Theory Appl., 140 (2009), 355.  doi: 10.1007/s10957-008-9452-9.  Google Scholar

[21]

T. Tarnopolskaya and N. L. Fulton, Parametric behavior of the optimal control solution for collision avoidance in a close proximity encounter,, in 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation (eds. R. S. Andersson et al.), (2009), 425.   Google Scholar

[22]

T. Tarnopolskaya and N. L. Fulton, Synthesis of optimal control for cooperative collision avoidance for aircraft (ships) with unequal turn capabilities,, J. Optim. Theory Appl., 144 (2010), 367.  doi: 10.1007/s10957-009-9597-1.  Google Scholar

[23]

T. Tarnopolskaya and N. L. Fulton, Dispersal curves for optimal collision avoidance in a close proximity encounter: A case of participants with unequal turn rates,, in Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2010, (2010), 1789.   Google Scholar

[24]

T. Tarnopolskaya and N. L. Fulton, Non-unique optimal collision avoidance strategies for coplanar encounter of participants with unequal turn capabilities,, IAENG Int. J. Appl. Math., 40 (2010), 289.   Google Scholar

[25]

T. Tarnopolskaya and N. L. Fulton, Synthesis of optimal control for cooperative collision avoidance in a close proximity encounter: Special cases,, in Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC), (2011), 9775.   Google Scholar

[26]

T. Tarnopolskaya, N. L. Fulton and H. Maurer, Synthesis of optimal bang-bang control for cooperative collision avoidance for aircraft (ships) with unequal linear speeds,, J. Optim. Theory Appl., 155 (2012), 115.  doi: 10.1007/s10957-012-0049-y.  Google Scholar

[27]

G. Vossen, Numerische Lösungsmethoden, Hinreichende Optimalitätsbedingungen und Sensitivitätsanalyse für Optimale Bang-Bang und Singuläre Steuerungen,, Ph.D thesis, (2005).   Google Scholar

[28]

G. Vossen, Switching time optimization for bang-bang and singular controls,, J. Optim. Theory Appl., 144 (2010), 409.  doi: 10.1007/s10957-009-9594-4.  Google Scholar

[29]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Math. Program., 106 (2006), 25.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

show all references

References:
[1]

M. S. Aronna, J. F. Bonnans, A. V. Dmitruk and P. A. Lotito, Quadratic conditions for bang-singular extremals,, Numer. Algebra Control Optim., 2 (2012), 511.  doi: 10.3934/naco.2012.2.511.  Google Scholar

[2]

M. S. Aronna, Second Order Analysis of Optimal Control Problems with Singular Arcs. Optimality Conditions and Shooting Algorithm,, Ph.D thesis, (2011).   Google Scholar

[3]

C. Büskens, Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustands-Beschränkungen,, Ph.D thesis, (1998).   Google Scholar

[4]

C. Büskens and H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control. SQP-based direct discretization methods for practical optimal control problems,, J. Comput. Appl. Math., 120 (2000), 85.  doi: 10.1016/S0377-0427(00)00305-8.  Google Scholar

[5]

C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems,, in Online Optimization of Large Scale Systems (eds. M. Gr\, (2001), 3.   Google Scholar

[6]

R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming,, Duxbury Press, (1993).   Google Scholar

[7]

M. Hestens, Calculus of Variations and Optimal Control Theory,, John Wiley & Sons, (1966).   Google Scholar

[8]

A. J. Krener, The high order maximum principle and its application to singular extremals,, SIAM J. Control and Optimization, 15 (1977), 256.  doi: 10.1137/0315019.  Google Scholar

[9]

H. Maurer, Numerical solution of singular control problems using multiple shooting methods,, J. Optimization Theory and Applications, 18 (1976), 235.  doi: 10.1007/BF00935706.  Google Scholar

[10]

H. Maurer, C. Büskens, J.-H. R. Kim and Y. Kaya, Optimization methods for the verification of second-order sufficient conditions for bang-bang controls,, Optimal Control Appl. Methods, 26 (2005), 129.  doi: 10.1002/oca.756.  Google Scholar

[11]

H. Maurer and H. J. Oberle, Second order sufficient conditions for optimal control problems with free final time: The Riccati approach,, SIAM J. Control and Optim., 41 (2002), 380.  doi: 10.1137/S0363012900377419.  Google Scholar

[12]

H. Maurer, T. Tarnopolskaya and N. L. Fulton, Singular controls in optimal collision avoidance for participants with unequal linear speeds,, ANZIAM J., 53 (2012).   Google Scholar

[13]

H. Maurer, T. Tarnopolskaya and N. L. Fulton, Optimal bang-bang and singular controls in collision avoidance for participants with unequal linear speeds,, in 51st IEEE Conference on Decision and Control (CDC), (2012), 7697.  doi: 10.1109/CDC.2012.6426792.  Google Scholar

[14]

A. W. Merz, Optimal aircraft collision avoidance,, in Proceedings of the Joint Automatic Control Conference, (1973), 15.   Google Scholar

[15]

A. W. Merz, Optimal evasive manoeuvres in maritime collision avoidance,, Navigation, 20 (1973), 144.   Google Scholar

[16]

H. J. Oberle, Numerical computation of singular control functions in trajectory optimization problems,, J. of Guidance, 13 (1990), 153.  doi: 10.2514/3.20529.  Google Scholar

[17]

N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control. Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control,, Advances in Control and Design, (2012).  doi: 10.1137/1.9781611972368.  Google Scholar

[18]

N. P. Osmolovskii and H. Maurer, Equivalence of second order optimality conditions for bang-bang control problems. I. Main results,, Control and Cybernetics, 34 (2005), 927.   Google Scholar

[19]

L. S. Pontryagin, W. G. Boltyanski, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Wiley, (1965).   Google Scholar

[20]

T. Tarnopolskaya and N. L. Fulton, Optimal cooperative collision avoidance strategy for coplanar encounter: Merz's solution revisited,, J. Optim. Theory Appl., 140 (2009), 355.  doi: 10.1007/s10957-008-9452-9.  Google Scholar

[21]

T. Tarnopolskaya and N. L. Fulton, Parametric behavior of the optimal control solution for collision avoidance in a close proximity encounter,, in 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation (eds. R. S. Andersson et al.), (2009), 425.   Google Scholar

[22]

T. Tarnopolskaya and N. L. Fulton, Synthesis of optimal control for cooperative collision avoidance for aircraft (ships) with unequal turn capabilities,, J. Optim. Theory Appl., 144 (2010), 367.  doi: 10.1007/s10957-009-9597-1.  Google Scholar

[23]

T. Tarnopolskaya and N. L. Fulton, Dispersal curves for optimal collision avoidance in a close proximity encounter: A case of participants with unequal turn rates,, in Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2010, (2010), 1789.   Google Scholar

[24]

T. Tarnopolskaya and N. L. Fulton, Non-unique optimal collision avoidance strategies for coplanar encounter of participants with unequal turn capabilities,, IAENG Int. J. Appl. Math., 40 (2010), 289.   Google Scholar

[25]

T. Tarnopolskaya and N. L. Fulton, Synthesis of optimal control for cooperative collision avoidance in a close proximity encounter: Special cases,, in Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC), (2011), 9775.   Google Scholar

[26]

T. Tarnopolskaya, N. L. Fulton and H. Maurer, Synthesis of optimal bang-bang control for cooperative collision avoidance for aircraft (ships) with unequal linear speeds,, J. Optim. Theory Appl., 155 (2012), 115.  doi: 10.1007/s10957-012-0049-y.  Google Scholar

[27]

G. Vossen, Numerische Lösungsmethoden, Hinreichende Optimalitätsbedingungen und Sensitivitätsanalyse für Optimale Bang-Bang und Singuläre Steuerungen,, Ph.D thesis, (2005).   Google Scholar

[28]

G. Vossen, Switching time optimization for bang-bang and singular controls,, J. Optim. Theory Appl., 144 (2010), 409.  doi: 10.1007/s10957-009-9594-4.  Google Scholar

[29]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Math. Program., 106 (2006), 25.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[3]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[4]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[5]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[6]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[7]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[8]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[9]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[10]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[11]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[12]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[13]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[14]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[15]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[16]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[17]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[18]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[19]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[20]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (459)
  • HTML views (0)
  • Cited by (2)

[Back to Top]