April  2014, 10(2): 461-476. doi: 10.3934/jimo.2014.10.461

A new parallel splitting descent method for structured variational inequalities

1. 

School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210023, China, China

2. 

School of Mathematical Sciences, Jiangsu Key Labratory for NSLSCS, Nanjing Normal University, Nanjing, 210023

Received  October 2012 Revised  August 2013 Published  October 2013

In this paper, we propose a new parallel splitting descent method for solving a class of variational inequalities with separable structure. The new method can be applied to solve convex optimization problems in which the objective function is separable with three operators and the constraint is linear. In the framework of the new algorithm, we adopt a new descent strategy by combining two descent directions and resolve the descent direction which is different from the methods in He (Comput. Optim. Appl., 2009, 42: 195-212.) and Wang et al. (submitted to J. Optimiz. Theory App.). Theoretically, we establish the global convergence of the new method under mild assumptions. In addition, we apply the new method to solve problems in management science and traffic equilibrium problem. Numerical results indicate that the new method is efficient and reliable.
Citation: Kai Wang, Lingling Xu, Deren Han. A new parallel splitting descent method for structured variational inequalities. Journal of Industrial & Management Optimization, 2014, 10 (2) : 461-476. doi: 10.3934/jimo.2014.10.461
References:
[1]

D. P. Bertsekas and E. M. Gafni, Projection methods for variational inequalities with application to the traffic assignment problem,, in Nondifferential and Variational Techniques in Optimization, (1982), 139.   Google Scholar

[2]

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compution,, Numerical Methods, (1989).   Google Scholar

[3]

M. D'Apuzzo, M. Marino, A. Migdalas, P. M. Pardalos and G. Toraldo, Parallel computing in global optimization,, in Handbook of Parallel Computing and Statistics (eds. E. J. Kontoghiorghes), (2006), 225.  doi: 10.1201/9781420028683.ch7.  Google Scholar

[4]

J. Eckstein, Some saddle-function splitting methods for convex programming,, Optimization Methods Software, 4 (1994), 75.  doi: 10.1080/10556789408805578.  Google Scholar

[5]

J. Eckstein and M. Fukushima, Some reformulation and applications of the alternating direction method of multipliers,, in Large Scale Optimization (Gainesville, (1993), 115.   Google Scholar

[6]

F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems,, Springer, (2003).   Google Scholar

[7]

M. C. Ferris and J. S. Pang, Engineering and economic applications of comlementarity problems,, SIAM Review, 39 (1997), 669.  doi: 10.1137/S0036144595285963.  Google Scholar

[8]

M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems,, Comput. Optim. Appl., 1 (1992), 93.  doi: 10.1007/BF00247655.  Google Scholar

[9]

D. Gabay, Applications of the method of multipliers to variational inequalities,, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Valued Problems (eds. M. Fortin and R. Glowinski), (1983), 299.  doi: 10.1016/S0168-2024(08)70034-1.  Google Scholar

[10]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations,, Computers & Mathematics with Applications, 2 (1976), 17.  doi: 10.1016/0898-1221(76)90003-1.  Google Scholar

[11]

R. Glowinski, Numerical Methods for Nonlinear Variational Problems,, Springer-Verlag, (1984).   Google Scholar

[12]

R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics,, SIAM Studies in Applied Mathematics, (1989).  doi: 10.1137/1.9781611970838.  Google Scholar

[13]

D. R. Han, X. M. Yuan and W. X. Zhang, An augmented-Lagrangian-based parallel splitting method for separable convex programming with applications to image processing,, manuscript., ().   Google Scholar

[14]

D. R. Han, X. M. Yuan, W. X. Zhang and X. J. Cai, An ADM-based splitting method for separable convex programming,, Computational Optimization and Applications, 54 (2013), 343.  doi: 10.1007/s10589-012-9510-y.  Google Scholar

[15]

B.-S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities,, Comput. Optim. Appl., 42 (2009), 195.  doi: 10.1007/s10589-007-9109-x.  Google Scholar

[16]

B.-S. He, L. Z. Liao, H. Yang and D. R. Han, A new inexact alternating directions method for monotone variational inequalities,, Math. Program., 92 (2002), 103.  doi: 10.1007/s101070100280.  Google Scholar

[17]

B.-S. He and L. Z. Liao, Improvements of some projection methods for monotone nonlinear variational inequalities,, J. Optim. Theory Appl., 112 (2002), 111.  doi: 10.1023/A:1013096613105.  Google Scholar

[18]

B.-S. He, Y. Xu and X.-M. Yuan, A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities,, Comput. Optim. Appl., 35 (2006), 19.  doi: 10.1007/s10589-006-6442-4.  Google Scholar

[19]

B.-S. He, H. Yang and S. L. Wang, Altermating direction method with self-adaptive penalty parameters for monotone variational inequalities,, J. Optim. Theory Appl., 106 (2000), 337.  doi: 10.1023/A:1004603514434.  Google Scholar

[20]

B.-S. He, M. Tao and X.-M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming,, SIAM J. Optim., 22 (2012), 313.  doi: 10.1137/110822347.  Google Scholar

[21]

B.-S. He, M. Tao, M. H. Xu and X.-M. Yuan, Alternating directions based contraction method for generally separable linearly constrained convex programming problems,, manuscript, (2009).   Google Scholar

[22]

Z. K. Jiang and X. M. Yuan, New parallel descent-like method for sloving a class of variational inequalities,, J. Optim. Theory Appl., 145 (2010), 311.  doi: 10.1007/s10957-009-9619-z.  Google Scholar

[23]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Application,, Pure and Applied Mathematics, (1980).   Google Scholar

[24]

A. Migdalas, P. M. Pardalos and S. Storøy, eds., Parallel Computing in Optimization,, Applied Optimization, (1997).   Google Scholar

[25]

A. Migdalas, G. Toraldo and V. Kumar, Nonlinear optimization and parallel computing,, Parallel Computing, 29 (2003), 375.  doi: 10.1016/S0167-8191(03)00013-9.  Google Scholar

[26]

A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications,, International Series in Operations Research & Management Science, (1996).  doi: 10.1007/978-1-4615-2301-7.  Google Scholar

[27]

P. M. Pardalos and S. Rajasekaran, eds., Advances in Randomized Parallel Computing,, Kluwer Academic Publishers, (1999).  doi: 10.1007/978-1-4613-3282-4.  Google Scholar

[28]

J. Sun and S. Zhang, A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs,, European J. Oper. Res., 207 (2010), 1210.  doi: 10.1016/j.ejor.2010.07.020.  Google Scholar

[29]

K. Wang, D. R. Han and L. L. Xu, A parallel splitting method for separable convex programming,, J. Optim. Theory Appl., 159 (2013), 138.  doi: 10.1007/s10957-013-0277-9.  Google Scholar

show all references

References:
[1]

D. P. Bertsekas and E. M. Gafni, Projection methods for variational inequalities with application to the traffic assignment problem,, in Nondifferential and Variational Techniques in Optimization, (1982), 139.   Google Scholar

[2]

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compution,, Numerical Methods, (1989).   Google Scholar

[3]

M. D'Apuzzo, M. Marino, A. Migdalas, P. M. Pardalos and G. Toraldo, Parallel computing in global optimization,, in Handbook of Parallel Computing and Statistics (eds. E. J. Kontoghiorghes), (2006), 225.  doi: 10.1201/9781420028683.ch7.  Google Scholar

[4]

J. Eckstein, Some saddle-function splitting methods for convex programming,, Optimization Methods Software, 4 (1994), 75.  doi: 10.1080/10556789408805578.  Google Scholar

[5]

J. Eckstein and M. Fukushima, Some reformulation and applications of the alternating direction method of multipliers,, in Large Scale Optimization (Gainesville, (1993), 115.   Google Scholar

[6]

F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems,, Springer, (2003).   Google Scholar

[7]

M. C. Ferris and J. S. Pang, Engineering and economic applications of comlementarity problems,, SIAM Review, 39 (1997), 669.  doi: 10.1137/S0036144595285963.  Google Scholar

[8]

M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems,, Comput. Optim. Appl., 1 (1992), 93.  doi: 10.1007/BF00247655.  Google Scholar

[9]

D. Gabay, Applications of the method of multipliers to variational inequalities,, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Valued Problems (eds. M. Fortin and R. Glowinski), (1983), 299.  doi: 10.1016/S0168-2024(08)70034-1.  Google Scholar

[10]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations,, Computers & Mathematics with Applications, 2 (1976), 17.  doi: 10.1016/0898-1221(76)90003-1.  Google Scholar

[11]

R. Glowinski, Numerical Methods for Nonlinear Variational Problems,, Springer-Verlag, (1984).   Google Scholar

[12]

R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics,, SIAM Studies in Applied Mathematics, (1989).  doi: 10.1137/1.9781611970838.  Google Scholar

[13]

D. R. Han, X. M. Yuan and W. X. Zhang, An augmented-Lagrangian-based parallel splitting method for separable convex programming with applications to image processing,, manuscript., ().   Google Scholar

[14]

D. R. Han, X. M. Yuan, W. X. Zhang and X. J. Cai, An ADM-based splitting method for separable convex programming,, Computational Optimization and Applications, 54 (2013), 343.  doi: 10.1007/s10589-012-9510-y.  Google Scholar

[15]

B.-S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities,, Comput. Optim. Appl., 42 (2009), 195.  doi: 10.1007/s10589-007-9109-x.  Google Scholar

[16]

B.-S. He, L. Z. Liao, H. Yang and D. R. Han, A new inexact alternating directions method for monotone variational inequalities,, Math. Program., 92 (2002), 103.  doi: 10.1007/s101070100280.  Google Scholar

[17]

B.-S. He and L. Z. Liao, Improvements of some projection methods for monotone nonlinear variational inequalities,, J. Optim. Theory Appl., 112 (2002), 111.  doi: 10.1023/A:1013096613105.  Google Scholar

[18]

B.-S. He, Y. Xu and X.-M. Yuan, A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities,, Comput. Optim. Appl., 35 (2006), 19.  doi: 10.1007/s10589-006-6442-4.  Google Scholar

[19]

B.-S. He, H. Yang and S. L. Wang, Altermating direction method with self-adaptive penalty parameters for monotone variational inequalities,, J. Optim. Theory Appl., 106 (2000), 337.  doi: 10.1023/A:1004603514434.  Google Scholar

[20]

B.-S. He, M. Tao and X.-M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming,, SIAM J. Optim., 22 (2012), 313.  doi: 10.1137/110822347.  Google Scholar

[21]

B.-S. He, M. Tao, M. H. Xu and X.-M. Yuan, Alternating directions based contraction method for generally separable linearly constrained convex programming problems,, manuscript, (2009).   Google Scholar

[22]

Z. K. Jiang and X. M. Yuan, New parallel descent-like method for sloving a class of variational inequalities,, J. Optim. Theory Appl., 145 (2010), 311.  doi: 10.1007/s10957-009-9619-z.  Google Scholar

[23]

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Application,, Pure and Applied Mathematics, (1980).   Google Scholar

[24]

A. Migdalas, P. M. Pardalos and S. Storøy, eds., Parallel Computing in Optimization,, Applied Optimization, (1997).   Google Scholar

[25]

A. Migdalas, G. Toraldo and V. Kumar, Nonlinear optimization and parallel computing,, Parallel Computing, 29 (2003), 375.  doi: 10.1016/S0167-8191(03)00013-9.  Google Scholar

[26]

A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications,, International Series in Operations Research & Management Science, (1996).  doi: 10.1007/978-1-4615-2301-7.  Google Scholar

[27]

P. M. Pardalos and S. Rajasekaran, eds., Advances in Randomized Parallel Computing,, Kluwer Academic Publishers, (1999).  doi: 10.1007/978-1-4613-3282-4.  Google Scholar

[28]

J. Sun and S. Zhang, A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs,, European J. Oper. Res., 207 (2010), 1210.  doi: 10.1016/j.ejor.2010.07.020.  Google Scholar

[29]

K. Wang, D. R. Han and L. L. Xu, A parallel splitting method for separable convex programming,, J. Optim. Theory Appl., 159 (2013), 138.  doi: 10.1007/s10957-013-0277-9.  Google Scholar

[1]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[2]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[3]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[4]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[5]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[6]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[7]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[8]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[9]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[10]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[11]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[12]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[13]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[14]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[15]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[16]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[17]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[18]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[19]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[20]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]