April  2014, 10(2): 477-501. doi: 10.3934/jimo.2014.10.477

Designing rendezvous missions with mini-moons using geometric optimal control

1. 

Department of Mathematics, University of Hawaii at Manoa, Honolulu, United States, United States, United States

2. 

Department of Physics, University of Helsinki, Helsinki, Finland

3. 

Institute for Astronomy, University of Hawaii at Manoa, Honolulu, United States

4. 

Institut de Mécanique Céleste et de Calcul des Éphémérides, Observatoire de Paris, Paris, France

Received  March 2013 Revised  August 2013 Published  October 2013

Temporarily-captured Natural Earth Satellites (NES) are very appealing targets for space missions for many reasons. Indeed, NES get captured by the Earth's gravity for some period of time, making for a more cost-effective and time-effective mission compared to a deep-space mission, such as the 7-year Hayabusa mission. Moreover, their small size introduces the possibility of returning with the entire temporarily-captured orbiter (TCO) to Earth. Additionally, NES can be seen as interesting targets when examining figures of their orbits. It requires to expand the current state-of-art of the techniques in geometric optimal control applied to low-thrust orbital transfers. Based on a catalogue of over sixteen-thousand NES, and assuming ionic propulsion for the spacecraft, we compute time minimal rendezvous missions for more than $96%$ of the NES. The time optimal control transfers are calculated using classical indirect methods of optimal control based on the Pontryagin Maximum Principle. Additionally we verify the local optimality of the transfers using second order conditions.
Citation: Monique Chyba, Geoff Patterson, Gautier Picot, Mikael Granvik, Robert Jedicke, Jeremie Vaubaillon. Designing rendezvous missions with mini-moons using geometric optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 477-501. doi: 10.3934/jimo.2014.10.477
References:
[1]

A. A. Agrachev and A. V. Sarychev, On abnormals extremals for Lagrange variational problems,, J. Math. Systems. Estim. Control, 8 (1998), 87.   Google Scholar

[2]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint,, Encyclopaedia of Mathematical Sciences, (2004).   Google Scholar

[3]

E. L. Allgower and K. Georg, Numerical Continuation Methods. An Introduction,, Springer Series in Computational Mathematics, (1990).  doi: 10.1007/978-3-642-61257-2.  Google Scholar

[4]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, 2nd edition, (1989).   Google Scholar

[5]

J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon,, SIAM J. Appl. Dyn. Syst., 2 (2003), 144.  doi: 10.1137/S1111111102409080.  Google Scholar

[6]

E. Belbruno, Capture Dynamics and Chaotic Motion in Celestial Mechanics. With Applications to the Construction of Low Energy Transfers,, Princeton University Press, (2004).   Google Scholar

[7]

E. Belbruno, Fly me to the Moon. An Insider'S Guide to the New Science of Space Travel,, Princeton University Press, (2007).   Google Scholar

[8]

B. Bonnard, J.-B. Caillau and G. Picot, Geometric and numerical techniques in optimal control of the two and three-body problems,, Commun. Inf. Syst., 10 (2010), 239.  doi: 10.4310/CIS.2010.v10.n4.a5.  Google Scholar

[9]

B. Bonnard, J.-B. Caillau and E. Télat, Geometric optimal control of elliptic Keplerian orbits,, Discrete Cont. Dyn. Syst. Ser. B, 5 (2005), 929.  doi: 10.3934/dcdsb.2005.5.929.  Google Scholar

[10]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control,, ESAIM Control Optim. and Calc. Var., 13 (2007), 207.  doi: 10.1051/cocv:2007012.  Google Scholar

[11]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory,, Mathématiques & Applications (Berlin) [Mathematics & Applications], (2003).   Google Scholar

[12]

B. Bonnard, L. Faubourg and E. Trélat, Mécanique Céleste et Contrôle des Véhicules Spatiaux,, Mathématiques & Applications (Berlin) [Mathematics & Applications], 51 (2006).   Google Scholar

[13]

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal,, (French) [Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem], 5 (1998), 111.  doi: 10.1515/form.1993.5.111.  Google Scholar

[14]

B. Bonnard, N. Shcherbakova and D. Sugny, The smooth continuation method in optimal control with an application to quantum systems,, ESAIM Control Optim. and Calc. Var., 17 (2011), 267.  doi: 10.1051/cocv/2010004.  Google Scholar

[15]

E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control. Optimization, Estimation and Control,, Revised printing, (1975).   Google Scholar

[16]

J.-B. Caillau, Contribution à l'Etude du Contrôle en Temps Minimal des Transferts Orbitaux,, Ph.D thesis, (2000).   Google Scholar

[17]

M. Chyba, G. Picot, G. Patterson, R. Jedicke, M. Granvik and J. Vaubaillon, Time-minimal orbital transfers to temporarily-captured natural Earth satellites,, to appear in OCA5 - Advances in Optimization and Control with Applications, (2013).   Google Scholar

[18]

J.-B. Caillau, O. Cots and J. Gergaud, Differential continuation for regular optimal control problems,, Optim. Methods Softw., 27 (2012), 177.  doi: 10.1080/10556788.2011.593625.  Google Scholar

[19]

B. Daoud, Contribution au Contrôle Optimal du Problème Circulaire Restreint des Trois Corps,, Ph.D thesis, (2011).   Google Scholar

[20]

J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 294.  doi: 10.1051/cocv:2006003.  Google Scholar

[21]

G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariants manifolds, the spatial three-body problem and space mission design,, in AAS/AIAA Astrodynamics Specialtists Conference, (2001).   Google Scholar

[22]

G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Connecting orbits and invariant manifolds in the spatial three-body problem,, Nonlinearity, 17 (2004), 1571.  doi: 10.1088/0951-7715/17/5/002.  Google Scholar

[23]

M. Granvik, J. Vaubaillon and R. Jedicke, The population of natural Earth satellites,, Icarus, 218 (2012), 262.  doi: 10.1016/j.icarus.2011.12.003.  Google Scholar

[24]

V. Jurdjevic, Geometric Control Theory,, Cambridge Studies in Advanced Mathematics, (1997).   Google Scholar

[25]

J. Kawagachi, A. Fujiwara and T. K. Uesugi, The ion engine cruise operation and the Earth swingby of Hayabusa (MUSES-C),, in Proceddings of the 55th International Astronotical Congress, (2004).   Google Scholar

[26]

T. Kubota, T. Hashimoto, J. Kawagachi, M. Uo and M. Shirakawa, Guidance and Navigation of Hayabusa spacecraft to asteroid exploration and sample return mission,, in Proceddings of SICE-ICASE, (2006), 2793.  doi: 10.1109/SICE.2006.314761.  Google Scholar

[27]

D. Liberzon, Calculus of Variations and Optimal Control Theory. A Concise Introduction,, Princeton University Press, (2012).   Google Scholar

[28]

H. Mäurer, First and second order sufficient optimality conditions in mathematical programming and optimal control,, in Mathematical Programming at Oberwolfach (Proc. Conf., (1979), 163.   Google Scholar

[29]

A. Moore, Discrete Mechanics and Optimal Control for Space Trajectory Design,, Ph.D thesis, (2011).   Google Scholar

[30]

I. Newton, Principes Mathématiques de la Philosophie Naturelle. Tome I, II. (French) Traduction de la Marquise du Chastellet, Augmentée des Commentaires de Clairaut,, Librairie Scientifique et Technique Albert Blanchard, (1966).   Google Scholar

[31]

G. Picot, Shooting and numerical continuation method for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion,, Discrete Cont. Dyn. Syst. Ser. B, 17 (2012), 245.  doi: 10.3934/dcdsb.2012.17.245.  Google Scholar

[32]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[33]

G. Racca, B. H. Foing and M. Coradini, SMART-1: The first time of Europe to the Moon,, Earth, 85-86 (2001), 85.   Google Scholar

[34]

G. Racca et al., SMART-1 mission description and development status,, Planetary and Space Science, 50 (2002), 1323.   Google Scholar

[35]

A. G. Santo, S. C Lee and R. E Gold, NEAR spacecraft and instrumentation,, J. Astronomical Sciences, 43 (1995), 373.   Google Scholar

[36]

A. V. Sary\vchev, Index of second variation of a control system,, Mat. Sb. (N.S), 113(155) (1980), 464.   Google Scholar

[37]

V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies,, Academic Press, (1967).   Google Scholar

[38]

D. A Vallado, Fundamentals of Astrodynamics and Applications,, Springer, (2001).   Google Scholar

[39]

V. Zeidan, First and second order sufficient conditions for optimal control and the calculus of variations,, Appl. Math. and Optim., 11 (1984), 209.  doi: 10.1007/BF01442179.  Google Scholar

show all references

References:
[1]

A. A. Agrachev and A. V. Sarychev, On abnormals extremals for Lagrange variational problems,, J. Math. Systems. Estim. Control, 8 (1998), 87.   Google Scholar

[2]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint,, Encyclopaedia of Mathematical Sciences, (2004).   Google Scholar

[3]

E. L. Allgower and K. Georg, Numerical Continuation Methods. An Introduction,, Springer Series in Computational Mathematics, (1990).  doi: 10.1007/978-3-642-61257-2.  Google Scholar

[4]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, 2nd edition, (1989).   Google Scholar

[5]

J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon,, SIAM J. Appl. Dyn. Syst., 2 (2003), 144.  doi: 10.1137/S1111111102409080.  Google Scholar

[6]

E. Belbruno, Capture Dynamics and Chaotic Motion in Celestial Mechanics. With Applications to the Construction of Low Energy Transfers,, Princeton University Press, (2004).   Google Scholar

[7]

E. Belbruno, Fly me to the Moon. An Insider'S Guide to the New Science of Space Travel,, Princeton University Press, (2007).   Google Scholar

[8]

B. Bonnard, J.-B. Caillau and G. Picot, Geometric and numerical techniques in optimal control of the two and three-body problems,, Commun. Inf. Syst., 10 (2010), 239.  doi: 10.4310/CIS.2010.v10.n4.a5.  Google Scholar

[9]

B. Bonnard, J.-B. Caillau and E. Télat, Geometric optimal control of elliptic Keplerian orbits,, Discrete Cont. Dyn. Syst. Ser. B, 5 (2005), 929.  doi: 10.3934/dcdsb.2005.5.929.  Google Scholar

[10]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control,, ESAIM Control Optim. and Calc. Var., 13 (2007), 207.  doi: 10.1051/cocv:2007012.  Google Scholar

[11]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory,, Mathématiques & Applications (Berlin) [Mathematics & Applications], (2003).   Google Scholar

[12]

B. Bonnard, L. Faubourg and E. Trélat, Mécanique Céleste et Contrôle des Véhicules Spatiaux,, Mathématiques & Applications (Berlin) [Mathematics & Applications], 51 (2006).   Google Scholar

[13]

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal,, (French) [Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem], 5 (1998), 111.  doi: 10.1515/form.1993.5.111.  Google Scholar

[14]

B. Bonnard, N. Shcherbakova and D. Sugny, The smooth continuation method in optimal control with an application to quantum systems,, ESAIM Control Optim. and Calc. Var., 17 (2011), 267.  doi: 10.1051/cocv/2010004.  Google Scholar

[15]

E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control. Optimization, Estimation and Control,, Revised printing, (1975).   Google Scholar

[16]

J.-B. Caillau, Contribution à l'Etude du Contrôle en Temps Minimal des Transferts Orbitaux,, Ph.D thesis, (2000).   Google Scholar

[17]

M. Chyba, G. Picot, G. Patterson, R. Jedicke, M. Granvik and J. Vaubaillon, Time-minimal orbital transfers to temporarily-captured natural Earth satellites,, to appear in OCA5 - Advances in Optimization and Control with Applications, (2013).   Google Scholar

[18]

J.-B. Caillau, O. Cots and J. Gergaud, Differential continuation for regular optimal control problems,, Optim. Methods Softw., 27 (2012), 177.  doi: 10.1080/10556788.2011.593625.  Google Scholar

[19]

B. Daoud, Contribution au Contrôle Optimal du Problème Circulaire Restreint des Trois Corps,, Ph.D thesis, (2011).   Google Scholar

[20]

J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 294.  doi: 10.1051/cocv:2006003.  Google Scholar

[21]

G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariants manifolds, the spatial three-body problem and space mission design,, in AAS/AIAA Astrodynamics Specialtists Conference, (2001).   Google Scholar

[22]

G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Connecting orbits and invariant manifolds in the spatial three-body problem,, Nonlinearity, 17 (2004), 1571.  doi: 10.1088/0951-7715/17/5/002.  Google Scholar

[23]

M. Granvik, J. Vaubaillon and R. Jedicke, The population of natural Earth satellites,, Icarus, 218 (2012), 262.  doi: 10.1016/j.icarus.2011.12.003.  Google Scholar

[24]

V. Jurdjevic, Geometric Control Theory,, Cambridge Studies in Advanced Mathematics, (1997).   Google Scholar

[25]

J. Kawagachi, A. Fujiwara and T. K. Uesugi, The ion engine cruise operation and the Earth swingby of Hayabusa (MUSES-C),, in Proceddings of the 55th International Astronotical Congress, (2004).   Google Scholar

[26]

T. Kubota, T. Hashimoto, J. Kawagachi, M. Uo and M. Shirakawa, Guidance and Navigation of Hayabusa spacecraft to asteroid exploration and sample return mission,, in Proceddings of SICE-ICASE, (2006), 2793.  doi: 10.1109/SICE.2006.314761.  Google Scholar

[27]

D. Liberzon, Calculus of Variations and Optimal Control Theory. A Concise Introduction,, Princeton University Press, (2012).   Google Scholar

[28]

H. Mäurer, First and second order sufficient optimality conditions in mathematical programming and optimal control,, in Mathematical Programming at Oberwolfach (Proc. Conf., (1979), 163.   Google Scholar

[29]

A. Moore, Discrete Mechanics and Optimal Control for Space Trajectory Design,, Ph.D thesis, (2011).   Google Scholar

[30]

I. Newton, Principes Mathématiques de la Philosophie Naturelle. Tome I, II. (French) Traduction de la Marquise du Chastellet, Augmentée des Commentaires de Clairaut,, Librairie Scientifique et Technique Albert Blanchard, (1966).   Google Scholar

[31]

G. Picot, Shooting and numerical continuation method for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion,, Discrete Cont. Dyn. Syst. Ser. B, 17 (2012), 245.  doi: 10.3934/dcdsb.2012.17.245.  Google Scholar

[32]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[33]

G. Racca, B. H. Foing and M. Coradini, SMART-1: The first time of Europe to the Moon,, Earth, 85-86 (2001), 85.   Google Scholar

[34]

G. Racca et al., SMART-1 mission description and development status,, Planetary and Space Science, 50 (2002), 1323.   Google Scholar

[35]

A. G. Santo, S. C Lee and R. E Gold, NEAR spacecraft and instrumentation,, J. Astronomical Sciences, 43 (1995), 373.   Google Scholar

[36]

A. V. Sary\vchev, Index of second variation of a control system,, Mat. Sb. (N.S), 113(155) (1980), 464.   Google Scholar

[37]

V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies,, Academic Press, (1967).   Google Scholar

[38]

D. A Vallado, Fundamentals of Astrodynamics and Applications,, Springer, (2001).   Google Scholar

[39]

V. Zeidan, First and second order sufficient conditions for optimal control and the calculus of variations,, Appl. Math. and Optim., 11 (1984), 209.  doi: 10.1007/BF01442179.  Google Scholar

[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[3]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[4]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[5]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[10]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[11]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[12]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[13]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (6)

[Back to Top]