\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On an optimal control problem in laser cutting with mixed finite-/infinite-dimensional constraints

Abstract Related Papers Cited by
  • A mathematical model for laser cutting with time-dependent cutting velocity is presented. The model involves two coupled nonlinear partial differential equations for the interacting dynamical behaviors of the free melt boundaries during the process. We define a measurement for the roughness of a cutting surface and introduce an optimal control problem for minimizing the roughness with respect to the cutting velocity and the laser beam intensity along the free melt surface. The optimal control problem involves an additional finite-dimensional averaging constraint. Necessary optimality conditions will be deduced and illustrated by means of numerical examples with data from industrial applications.
    Mathematics Subject Classification: 49J20, 35M13, 37N20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. K. Bernauer and R. Herzog, Optimal control of the classical two-phase Stefan problem in level set formulation, SIAM J. Sci. Comput., 33 (2011), 342-363.doi: 10.1137/100783327.

    [2]

    R. Fourer, D. M. Gay and B. Kernighan, A modeling language for mathematical programming, Management Science, 36 (1990), 519-554.

    [3]

    R. Friedrich, G. Radons, T. Ditzinger and A. Henning, Ripple formation through an interface instability from moving growth and erosion sources, Phys. Rev. Lett., 85 (2000), 4884-4887.

    [4]

    M. Hinze and S. Ziegenbalg, Optimal control of the free boundary in a two-phase Stefan problem, J. Comput. Phys., 223 (2007), 657-684.doi: 10.1016/j.jcp.2006.09.030.

    [5]

    K. Hirano and R. Fabbro, Experimental observation of hydrodynamics of melt layer and striation generation during laser cutting of steel, Physics Procedia, 12 (2011), 555-564.

    [6]

    K. Hirano and R. Fabbro, Possible explanations for different surface quality in laser cutting with 1 and 10 $\mu$m beams, Journal of Laser Application, 24 (2012), 9 pp.

    [7]

    J. D. Jackson, Classical Electrodynamics, 3rd Edition, John Wiley & Sons, New York, 1999.

    [8]

    G. Lamé and B. D. Clapeyron, Mémoire sur la solidification par refroidissement d'un globe liquide, Ann Chimie Physique, 47 (1831), 250-256.

    [9]

    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Vol. 6. Fluid Mechanics, 2nd edition, Pergamon Press, Oxford, 1987.

    [10]

    M. Nießen, Numerische Modellierung freier Randwertaufgaben und Anwendung auf das Laserschneiden, (in German) Ph.D thesis, RWTH Aachen University, 2005.

    [11]

    R. Poprawe, W. Schulz and R. Schmitt, Hydrodynamics of material removal by melt expulsion: Perspectives of laser cutting and drilling, Phys. Procedia, 5 (2010), 1-18.

    [12]

    S. Repke, N. Marheineke and R. Pinnau, On Adjoint-Based Optimization of a Free Surface Stokes Flow, Fraunhofer ITWM Bericht, 186, 2010.

    [13]

    W. Schulz, M. Nießen, U. Eppelt and K. Kowalick, Simulation of laser cutting, in The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology (ed. J. M. Dowden), Springer Series in Materials Science, 119, Springer, Netherlands, 2009.

    [14]

    W. Schulz, V. Kostrykin, M. Nießen, J. Michel, D. Petring, E. W. Kreutz and R. Poprawe, Dynamics of ripple formation and melt flow in laser beam cutting, J. Phys D: Appl. Phys., 32 (1999), 1219-1228.

    [15]

    K. Theißen, Optimale Steuerprozesse unter partiellen Differentialgleichungs-Restriktionen mit linear eingehender Steuerfunktion, (in German) Ph.D thesis, University of Münster, 2006.

    [16]

    F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Graduate Studies in Mathematics, 112, American Mathematical Society, Providence, RI, 2010.

    [17]

    O. Volkov, B. Protas, W. Liao and D. W. Glander, Adjoint-based optimization of thermo-fluid phenomena in welding processes, J. Eng. Math., 65 (2009), 201-220.doi: 10.1007/s10665-009-9292-0.

    [18]

    G. Vossen and J. Schüttler, Mathematical modelling and stability analysis for laser cutting, Math. Comput. Model. Dyn. Syst., 18 (2012), 439-463.doi: 10.1080/13873954.2011.642387.

    [19]

    G. Vossen, J. Schüttler and T. Hermanns, Analysis and optimal control for free melt flow boundaries in laser cutting with distributed radiation, submitted, ZAMM, Zeitschrift für Angewandte Mathematik und Mechanik, 2011.

    [20]

    A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006), 25-57.doi: 10.1007/s10107-004-0559-y.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return