• Previous Article
    Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy
  • JIMO Home
  • This Issue
  • Next Article
    Catastrophe equity put options under stochastic volatility and catastrophe-dependent jumps
January  2014, 10(1): 57-87. doi: 10.3934/jimo.2014.10.57

The FIFO single-server queue with disasters and multiple Markovian arrival streams

1. 

Department of Information and Communications Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan

Received  September 2012 Revised  June 2013 Published  October 2013

We consider a FIFO single-server queue with disasters and multiple Markovian arrival streams. When disasters occur, all customers are removed instantaneously and the system becomes empty. Both the customer arrival and disaster occurrence processes are assumed to be Markovian arrival processes (MAPs), and they are governed by a common underlying Markov chain with finite states. There are $K$ classes of customers, and the amounts of service requirements brought by arriving customers follow general distributions, which depend on the customer class and the states of the underlying Markov chain immediately before and after arrivals. For this queue, we first analyze the first passage time to the idle state and the busy cycle. We then obtain two different representations of the Laplace-Stieltjes transform of the stationary distribution of work in system, and discuss the relation between those. Furthermore, using the result on the workload distribution, we analyze the waiting time and sojourn time distributions, and derive the joint queue length distribution.
Citation: Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial & Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57
References:
[1]

E. Çinlar, "Introduction to Stochastic Processes,", Prentice-Hall, (1975).   Google Scholar

[2]

A. Dudin and S. Nishimura, A BMAP/SM/1 queueing system with Markovian arrival input of disasters,, J. Appl. Prob., 36 (1999), 868.  doi: 10.1239/jap/1032374640.  Google Scholar

[3]

A. Dudin and O. Semenova, A stable algorithm for stationary distribution calculation for a BMAP/SM/1 queueing system with Markovian arrival input of disasters,, J. Appl. Prob., 41 (2004), 547.  doi: 10.1239/jap/1082999085.  Google Scholar

[4]

F. R. Gantmacher, "The Theory of Matrices, Vol. 2,'', Translated by K. A. Hirsch Chelsea Publishing Co., (1959).   Google Scholar

[5]

Q.-M. He, Queues with marked customers,, Adv. Appl. Prob., 28 (1996), 567.  doi: 10.2307/1428072.  Google Scholar

[6]

D. P. Heyman and S. Stidham, Jr., The relation between customer and time averages in queues,, Oper. Res., 28 (1980), 983.  doi: 10.1287/opre.28.4.983.  Google Scholar

[7]

G. Jain and K. Sigman, A Pollaczek-Khintchine formula for M/G/1 queues with disasters,, J. Appl. Prob., 33 (1996), 1191.  doi: 10.2307/3214996.  Google Scholar

[8]

H. Masuyama and T. Takine, Analysis and computation of the joint queue length distribution in a FIFO single-server queue with multiple batch Markovian arrival streams,, Stoch. Models, 19 (2003), 349.  doi: 10.1081/STM-120023565.  Google Scholar

[9]

V. Ramaswami, A stable recursion for the steady state vector in Markov chains of M/G/1 type,, Stoch. Models, 4 (1988), 183.  doi: 10.1080/15326348808807077.  Google Scholar

[10]

Y. W. Shin, BMAP/G/1 queue with correlated arrivals of customers and disasters,, Oper. Res. Lett., 32 (2004), 364.  doi: 10.1016/j.orl.2003.09.005.  Google Scholar

[11]

T. Takine, Queue length distribution in a FIFO single-server queue with multiple arrival streams having different service time distributions,, Queueing Syst., 39 (2001), 349.  doi: 10.1023/A:1013961710829.  Google Scholar

[12]

T. Takine, Matrix product-form solution for an LCFS-PR single-server queue with multiple arrival streams governed by a Markov chain,, Queueing Syst., 42 (2002), 131.  doi: 10.1023/A:1020152920794.  Google Scholar

[13]

T. Takine and T. Hasegawa, The workload in the MAP/G/1 queue with state-dependent services: Its application to a queue with preemptive resume priority,, Comm. Statist. Stochastic Models, 10 (1994), 183.  doi: 10.1080/15326349408807292.  Google Scholar

[14]

H. C. Tijms, "Stochastic Models, An Algorithmic Approach,'', Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, (1994).   Google Scholar

show all references

References:
[1]

E. Çinlar, "Introduction to Stochastic Processes,", Prentice-Hall, (1975).   Google Scholar

[2]

A. Dudin and S. Nishimura, A BMAP/SM/1 queueing system with Markovian arrival input of disasters,, J. Appl. Prob., 36 (1999), 868.  doi: 10.1239/jap/1032374640.  Google Scholar

[3]

A. Dudin and O. Semenova, A stable algorithm for stationary distribution calculation for a BMAP/SM/1 queueing system with Markovian arrival input of disasters,, J. Appl. Prob., 41 (2004), 547.  doi: 10.1239/jap/1082999085.  Google Scholar

[4]

F. R. Gantmacher, "The Theory of Matrices, Vol. 2,'', Translated by K. A. Hirsch Chelsea Publishing Co., (1959).   Google Scholar

[5]

Q.-M. He, Queues with marked customers,, Adv. Appl. Prob., 28 (1996), 567.  doi: 10.2307/1428072.  Google Scholar

[6]

D. P. Heyman and S. Stidham, Jr., The relation between customer and time averages in queues,, Oper. Res., 28 (1980), 983.  doi: 10.1287/opre.28.4.983.  Google Scholar

[7]

G. Jain and K. Sigman, A Pollaczek-Khintchine formula for M/G/1 queues with disasters,, J. Appl. Prob., 33 (1996), 1191.  doi: 10.2307/3214996.  Google Scholar

[8]

H. Masuyama and T. Takine, Analysis and computation of the joint queue length distribution in a FIFO single-server queue with multiple batch Markovian arrival streams,, Stoch. Models, 19 (2003), 349.  doi: 10.1081/STM-120023565.  Google Scholar

[9]

V. Ramaswami, A stable recursion for the steady state vector in Markov chains of M/G/1 type,, Stoch. Models, 4 (1988), 183.  doi: 10.1080/15326348808807077.  Google Scholar

[10]

Y. W. Shin, BMAP/G/1 queue with correlated arrivals of customers and disasters,, Oper. Res. Lett., 32 (2004), 364.  doi: 10.1016/j.orl.2003.09.005.  Google Scholar

[11]

T. Takine, Queue length distribution in a FIFO single-server queue with multiple arrival streams having different service time distributions,, Queueing Syst., 39 (2001), 349.  doi: 10.1023/A:1013961710829.  Google Scholar

[12]

T. Takine, Matrix product-form solution for an LCFS-PR single-server queue with multiple arrival streams governed by a Markov chain,, Queueing Syst., 42 (2002), 131.  doi: 10.1023/A:1020152920794.  Google Scholar

[13]

T. Takine and T. Hasegawa, The workload in the MAP/G/1 queue with state-dependent services: Its application to a queue with preemptive resume priority,, Comm. Statist. Stochastic Models, 10 (1994), 183.  doi: 10.1080/15326349408807292.  Google Scholar

[14]

H. C. Tijms, "Stochastic Models, An Algorithmic Approach,'', Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, (1994).   Google Scholar

[1]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[2]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[3]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[4]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[5]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[6]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[7]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[8]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[9]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]