Citation: |
[1] |
R. K. Ahuja and J. B. Orlin, Inverse optimization, Operations Research, 49 (2001), 771-783.doi: 10.1287/opre.49.5.771.10607. |
[2] |
Mokhatar S. Bazaraa, Hanif D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Third edition, Wiley-Interscience [John Wiley $&$ Sons], Hoboken, NJ, 2006.doi: 10.1002/0471787779. |
[3] | |
[4] |
P. Brucker and N. V. Shakhlevich, Inverse scheduling with maximum lateness objective, Journal of Scheduling, 12 (2009), 475-488.doi: 10.1007/s10951-009-0117-9. |
[5] |
P. Brucker and N. V. Shakhlevich, Inverse Scheduling: Two-Machine Flow-Shop Problem, Journal of Scheduling, 2009.doi: 10.1007/s10951-010-0168-y. |
[6] |
R. J. Chen, F. Chen and G. C. Tang, Inverse problems of a single machine scheduling to minimize the total completion time, Journal of Shanghai Second Polytechnic University, 22 (2005), 1-7. |
[7] |
D. Goldfar and A. Idnani, A numerically stable dual method for solving strictly convex quadratic program, Mathematical Programming, 27 (1983), 1-33.doi: 10.1007/BF02591962. |
[8] |
C. Heuberger, Inverse combinatorial optimization: A survey on problems, methods and results, Journal of Combinatorial Optimization, 8 (2004), 329-361.doi: 10.1023/B:JOCO.0000038914.26975.9b. |
[9] |
Y. W. Jiang, L. C. Liu and W. Biao, Inverse minimum cost flow problems under the weighted Hamming distance, European Journal of Operational Research, 207 (2010), 50-54.doi: 10.1016/j.ejor.2010.03.029. |
[10] |
C. Koulamas, Inverse scheduling with controllable job parameters, International Journal of Services and Operations Management, 1 (2005), 35-43.doi: 10.1504/IJSOM.2005.006316. |
[11] |
L. C. Liu and J. Z. Zhang, Inverse maximum flow problems under the weighted Hamming distance, Journal of Combinatorial Optimization, 12 (2006), 395-408.doi: 10.1007/s10878-006-9006-8. |
[12] |
L. Liu and Q. Wang, Constrained inverse min-max spanning tree problems under the weighted Hamming distance, Journal of Global Optimization, 43 (2009), 83-95.doi: 10.1007/s10898-008-9294-x. |
[13] |
X. T. Xiao, L. W. Zhang and J. Z. Zhang, On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems, Journal of Industrial and Management Optimization, 5 (2009), 319-339.doi: 10.3934/jimo.2009.5.319. |
[14] |
C. Yang, J. Zhang and Z. Ma, Inverse maximum flow and minimum cut problems, Optimization, 40 (1997), 147-170.doi: 10.1080/02331939708844306. |
[15] |
X. G. Yang and J. Z. Zhang, Some inverse min-max network problems under weighted $l_1$ and $l_\infty$ norms with bound constraints on changes, Journal of Combinatorial Optimization, 13 (2007), 123-135.doi: 10.1007/s10878-006-9016-6. |
[16] |
X. Yang and J. Zhang, Some new results on inverse sorting problems, Lecture Notes in Computer Science, 3595 (2005), 985-992.doi: 10.1007/11533719_99. |
[17] |
F. Zhang, T. C. Ng and G. C. Tang, Inverse scheduling: Applications in shipping, International Journal of Shipping and Transport Logistics, 3 (2011), 312-322.doi: 10.1504/IJSTL.2011.040800. |
[18] |
J. Z. Zhang and Z. H. Liu, A further study on inverse linear programming problems, Journal of Computational and Applied Mathematics, 106 (1999), 345-359.doi: 10.1016/S0377-0427(99)00080-1. |