-
Previous Article
LS-SVM approximate solution for affine nonlinear systems with partially unknown functions
- JIMO Home
- This Issue
-
Next Article
A time-dependent scheduling problem to minimize the sum of the total weighted tardiness among two agents
The inverse parallel machine scheduling problem with minimum total completion time
1. | Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China |
References:
[1] |
R. K. Ahuja and J. B. Orlin, Inverse optimization,, Operations Research, 49 (2001), 771.
doi: 10.1287/opre.49.5.771.10607. |
[2] |
Mokhatar S. Bazaraa, Hanif D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms,, Third edition, (2006).
doi: 10.1002/0471787779. |
[3] |
P. Brucker, Scheduling Algorithms,, Springer, (2001).
|
[4] |
P. Brucker and N. V. Shakhlevich, Inverse scheduling with maximum lateness objective,, Journal of Scheduling, 12 (2009), 475.
doi: 10.1007/s10951-009-0117-9. |
[5] |
P. Brucker and N. V. Shakhlevich, Inverse Scheduling: Two-Machine Flow-Shop Problem,, Journal of Scheduling, (2009).
doi: 10.1007/s10951-010-0168-y. |
[6] |
R. J. Chen, F. Chen and G. C. Tang, Inverse problems of a single machine scheduling to minimize the total completion time,, Journal of Shanghai Second Polytechnic University, 22 (2005), 1. Google Scholar |
[7] |
D. Goldfar and A. Idnani, A numerically stable dual method for solving strictly convex quadratic program,, Mathematical Programming, 27 (1983), 1.
doi: 10.1007/BF02591962. |
[8] |
C. Heuberger, Inverse combinatorial optimization: A survey on problems, methods and results,, Journal of Combinatorial Optimization, 8 (2004), 329.
doi: 10.1023/B:JOCO.0000038914.26975.9b. |
[9] |
Y. W. Jiang, L. C. Liu and W. Biao, Inverse minimum cost flow problems under the weighted Hamming distance,, European Journal of Operational Research, 207 (2010), 50.
doi: 10.1016/j.ejor.2010.03.029. |
[10] |
C. Koulamas, Inverse scheduling with controllable job parameters,, International Journal of Services and Operations Management, 1 (2005), 35.
doi: 10.1504/IJSOM.2005.006316. |
[11] |
L. C. Liu and J. Z. Zhang, Inverse maximum flow problems under the weighted Hamming distance,, Journal of Combinatorial Optimization, 12 (2006), 395.
doi: 10.1007/s10878-006-9006-8. |
[12] |
L. Liu and Q. Wang, Constrained inverse min-max spanning tree problems under the weighted Hamming distance,, Journal of Global Optimization, 43 (2009), 83.
doi: 10.1007/s10898-008-9294-x. |
[13] |
X. T. Xiao, L. W. Zhang and J. Z. Zhang, On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems,, Journal of Industrial and Management Optimization, 5 (2009), 319.
doi: 10.3934/jimo.2009.5.319. |
[14] |
C. Yang, J. Zhang and Z. Ma, Inverse maximum flow and minimum cut problems,, Optimization, 40 (1997), 147.
doi: 10.1080/02331939708844306. |
[15] |
X. G. Yang and J. Z. Zhang, Some inverse min-max network problems under weighted $l_1$ and $l_\infty$ norms with bound constraints on changes,, Journal of Combinatorial Optimization, 13 (2007), 123.
doi: 10.1007/s10878-006-9016-6. |
[16] |
X. Yang and J. Zhang, Some new results on inverse sorting problems,, Lecture Notes in Computer Science, 3595 (2005), 985.
doi: 10.1007/11533719_99. |
[17] |
F. Zhang, T. C. Ng and G. C. Tang, Inverse scheduling: Applications in shipping,, International Journal of Shipping and Transport Logistics, 3 (2011), 312.
doi: 10.1504/IJSTL.2011.040800. |
[18] |
J. Z. Zhang and Z. H. Liu, A further study on inverse linear programming problems,, Journal of Computational and Applied Mathematics, 106 (1999), 345.
doi: 10.1016/S0377-0427(99)00080-1. |
show all references
References:
[1] |
R. K. Ahuja and J. B. Orlin, Inverse optimization,, Operations Research, 49 (2001), 771.
doi: 10.1287/opre.49.5.771.10607. |
[2] |
Mokhatar S. Bazaraa, Hanif D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms,, Third edition, (2006).
doi: 10.1002/0471787779. |
[3] |
P. Brucker, Scheduling Algorithms,, Springer, (2001).
|
[4] |
P. Brucker and N. V. Shakhlevich, Inverse scheduling with maximum lateness objective,, Journal of Scheduling, 12 (2009), 475.
doi: 10.1007/s10951-009-0117-9. |
[5] |
P. Brucker and N. V. Shakhlevich, Inverse Scheduling: Two-Machine Flow-Shop Problem,, Journal of Scheduling, (2009).
doi: 10.1007/s10951-010-0168-y. |
[6] |
R. J. Chen, F. Chen and G. C. Tang, Inverse problems of a single machine scheduling to minimize the total completion time,, Journal of Shanghai Second Polytechnic University, 22 (2005), 1. Google Scholar |
[7] |
D. Goldfar and A. Idnani, A numerically stable dual method for solving strictly convex quadratic program,, Mathematical Programming, 27 (1983), 1.
doi: 10.1007/BF02591962. |
[8] |
C. Heuberger, Inverse combinatorial optimization: A survey on problems, methods and results,, Journal of Combinatorial Optimization, 8 (2004), 329.
doi: 10.1023/B:JOCO.0000038914.26975.9b. |
[9] |
Y. W. Jiang, L. C. Liu and W. Biao, Inverse minimum cost flow problems under the weighted Hamming distance,, European Journal of Operational Research, 207 (2010), 50.
doi: 10.1016/j.ejor.2010.03.029. |
[10] |
C. Koulamas, Inverse scheduling with controllable job parameters,, International Journal of Services and Operations Management, 1 (2005), 35.
doi: 10.1504/IJSOM.2005.006316. |
[11] |
L. C. Liu and J. Z. Zhang, Inverse maximum flow problems under the weighted Hamming distance,, Journal of Combinatorial Optimization, 12 (2006), 395.
doi: 10.1007/s10878-006-9006-8. |
[12] |
L. Liu and Q. Wang, Constrained inverse min-max spanning tree problems under the weighted Hamming distance,, Journal of Global Optimization, 43 (2009), 83.
doi: 10.1007/s10898-008-9294-x. |
[13] |
X. T. Xiao, L. W. Zhang and J. Z. Zhang, On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems,, Journal of Industrial and Management Optimization, 5 (2009), 319.
doi: 10.3934/jimo.2009.5.319. |
[14] |
C. Yang, J. Zhang and Z. Ma, Inverse maximum flow and minimum cut problems,, Optimization, 40 (1997), 147.
doi: 10.1080/02331939708844306. |
[15] |
X. G. Yang and J. Z. Zhang, Some inverse min-max network problems under weighted $l_1$ and $l_\infty$ norms with bound constraints on changes,, Journal of Combinatorial Optimization, 13 (2007), 123.
doi: 10.1007/s10878-006-9016-6. |
[16] |
X. Yang and J. Zhang, Some new results on inverse sorting problems,, Lecture Notes in Computer Science, 3595 (2005), 985.
doi: 10.1007/11533719_99. |
[17] |
F. Zhang, T. C. Ng and G. C. Tang, Inverse scheduling: Applications in shipping,, International Journal of Shipping and Transport Logistics, 3 (2011), 312.
doi: 10.1504/IJSTL.2011.040800. |
[18] |
J. Z. Zhang and Z. H. Liu, A further study on inverse linear programming problems,, Journal of Computational and Applied Mathematics, 106 (1999), 345.
doi: 10.1016/S0377-0427(99)00080-1. |
[1] |
Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849 |
[2] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[3] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[4] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[5] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[6] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[7] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]