Citation: |
[1] |
A. Akyyuz-Dascioglu and H. Cerdik-Yaslan, The solution of high-order nonlinear ordinary differential equations by Chebyshev Series, Applied Mathematics and Computation, 217 (2011), 5658-5666.doi: 10.1016/j.amc.2010.12.044. |
[2] |
S. J. An, W. Q. Liu and S. Venkatesh, Fast Exact cross-validation of least squares support vector machines, Pattern Recognition, 40 (2007), 2154-2162. |
[3] |
T. Falck, K. Pelckmans, J. A. K. Suykens and B. De Moor, Identification of Wiener-Hammerstein Systems using LS-SVMs, 15th IFAC Symposium on System Identification, Saint-Malo, France, 2009. |
[4] |
Z. Guan and J. F. Lu, Basic of Numerical Analysis(Chinese), 2nd edition, Higher Education Press,Beijing, 2010. |
[5] |
A. Isidori, Nonlinear Control Systems: An Introduction, 3rd edition, Springer-Verlag, London, 1995. |
[6] |
D. R. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd edition, Brooks/Cole, Pacific Grove, CA, 2002. |
[7] |
I. E. Lagaris, A. Likas and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Transactions on Neural Networks, 9 (1998), 987-1000.doi: 10.1109/72.712178. |
[8] |
H. Lee and I. S. Kang, Neural algorithm for solving differential equations, Journal of Computational Physics, 91 (1990), 110-131.doi: 10.1016/0021-9991(90)90007-N. |
[9] |
K. S. McFall and J. R. Mahan, Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions, IEEE Transactions on Neural Networks, 20 (2009), 1221-1233.doi: 10.1109/TNN.2009.2020735. |
[10] |
S. Mehrkanoon, T. Falck and J. A. K. Suykens, Approximate solutions to ordinary differential equations using least squares support vector machines, IEEE Trans. on Neural Networks and Learning Systems, 23 (2012), 1356-1367.doi: 10.1109/TNNLS.2012.2202126. |
[11] |
M. Popescu, On minimum quadratic functional control of affine nonlinear systems, Nonlinear Analysis: Theory, Methods & Applications, 56 (2004), 1165-1173.doi: 10.1016/j.na.2003.11.009. |
[12] |
J. I. Ramos, Linearization techniques for singular initial-value problems of ordinary differential equations, Applied Mathematics and Computation, 161 (2005), 525-542.doi: 10.1016/j.amc.2003.12.047. |
[13] |
P. Ramuhalli, L. Udpa and S. S. Udpa, Finite-element neural networks for solving differential equations, IEEE Transactions on Neural Networks, 16 (2005), 1381-1392.doi: 10.1109/TNN.2005.857945. |
[14] |
J. A. K. Suykens, T. V. Gestel, J. Brabanter,B. D. Moor and J. Vandewalle, Least Squares Support Vector Machines, 1st edition, World Scientific, Singapore, 2002. |
[15] |
J. A. K. Suykens, J. Vandewalle and B. D. Moor, Optimal control by least squares support vector machines, Neural Networks, 14 (2001), 23-35.doi: 10.1016/S0893-6080(00)00077-0. |
[16] |
I. G. Tsoulos, D. Gavrilis and E. Glavas, Solving differential equations with constructed neural networks, Neurocomputing, 72 (2009), 2385-2391.doi: 10.1016/j.neucom.2008.12.004. |
[17] |
V. Vapnik, The Nature of Statistical Learning Theory, 1st edition, Springer- Verlag, New York,1995. |
[18] |
A. M. Wazwaz, A new method for solving initial value problems in second-order ordinary differential equations, Applied Mathematics and Computation, 128 (2002), 45-57.doi: 10.1016/S0096-3003(01)00021-2. |