-
Previous Article
Substitution secant/finite difference method to large sparse minimax problems
- JIMO Home
- This Issue
-
Next Article
The inverse parallel machine scheduling problem with minimum total completion time
LS-SVM approximate solution for affine nonlinear systems with partially unknown functions
1. | Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072, China, China, China |
2. | Department of Computing, Curtin University of Technology, Perth, WA 6102 |
References:
[1] |
A. Akyyuz-Dascioglu and H. Cerdik-Yaslan, The solution of high-order nonlinear ordinary differential equations by Chebyshev Series,, Applied Mathematics and Computation, 217 (2011), 5658.
doi: 10.1016/j.amc.2010.12.044. |
[2] |
S. J. An, W. Q. Liu and S. Venkatesh, Fast Exact cross-validation of least squares support vector machines,, Pattern Recognition, 40 (2007), 2154. Google Scholar |
[3] |
T. Falck, K. Pelckmans, J. A. K. Suykens and B. De Moor, Identification of Wiener-Hammerstein Systems using LS-SVMs,, 15th IFAC Symposium on System Identification, (2009). Google Scholar |
[4] |
Z. Guan and J. F. Lu, Basic of Numerical Analysis(Chinese),, 2nd edition, (2010). Google Scholar |
[5] |
A. Isidori, Nonlinear Control Systems: An Introduction,, 3rd edition, (1995).
|
[6] |
D. R. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific Computing,, 3rd edition, (2002).
|
[7] |
I. E. Lagaris, A. Likas and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations,, IEEE Transactions on Neural Networks, 9 (1998), 987.
doi: 10.1109/72.712178. |
[8] |
H. Lee and I. S. Kang, Neural algorithm for solving differential equations,, Journal of Computational Physics, 91 (1990), 110.
doi: 10.1016/0021-9991(90)90007-N. |
[9] |
K. S. McFall and J. R. Mahan, Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions,, IEEE Transactions on Neural Networks, 20 (2009), 1221.
doi: 10.1109/TNN.2009.2020735. |
[10] |
S. Mehrkanoon, T. Falck and J. A. K. Suykens, Approximate solutions to ordinary differential equations using least squares support vector machines,, IEEE Trans. on Neural Networks and Learning Systems, 23 (2012), 1356.
doi: 10.1109/TNNLS.2012.2202126. |
[11] |
M. Popescu, On minimum quadratic functional control of affine nonlinear systems,, Nonlinear Analysis: Theory, 56 (2004), 1165.
doi: 10.1016/j.na.2003.11.009. |
[12] |
J. I. Ramos, Linearization techniques for singular initial-value problems of ordinary differential equations,, Applied Mathematics and Computation, 161 (2005), 525.
doi: 10.1016/j.amc.2003.12.047. |
[13] |
P. Ramuhalli, L. Udpa and S. S. Udpa, Finite-element neural networks for solving differential equations,, IEEE Transactions on Neural Networks, 16 (2005), 1381.
doi: 10.1109/TNN.2005.857945. |
[14] |
J. A. K. Suykens, T. V. Gestel, J. Brabanter,B. D. Moor and J. Vandewalle, Least Squares Support Vector Machines,, 1st edition, (2002). Google Scholar |
[15] |
J. A. K. Suykens, J. Vandewalle and B. D. Moor, Optimal control by least squares support vector machines,, Neural Networks, 14 (2001), 23.
doi: 10.1016/S0893-6080(00)00077-0. |
[16] |
I. G. Tsoulos, D. Gavrilis and E. Glavas, Solving differential equations with constructed neural networks,, Neurocomputing, 72 (2009), 2385.
doi: 10.1016/j.neucom.2008.12.004. |
[17] |
V. Vapnik, The Nature of Statistical Learning Theory,, 1st edition, ().
|
[18] |
A. M. Wazwaz, A new method for solving initial value problems in second-order ordinary differential equations,, Applied Mathematics and Computation, 128 (2002), 45.
doi: 10.1016/S0096-3003(01)00021-2. |
show all references
References:
[1] |
A. Akyyuz-Dascioglu and H. Cerdik-Yaslan, The solution of high-order nonlinear ordinary differential equations by Chebyshev Series,, Applied Mathematics and Computation, 217 (2011), 5658.
doi: 10.1016/j.amc.2010.12.044. |
[2] |
S. J. An, W. Q. Liu and S. Venkatesh, Fast Exact cross-validation of least squares support vector machines,, Pattern Recognition, 40 (2007), 2154. Google Scholar |
[3] |
T. Falck, K. Pelckmans, J. A. K. Suykens and B. De Moor, Identification of Wiener-Hammerstein Systems using LS-SVMs,, 15th IFAC Symposium on System Identification, (2009). Google Scholar |
[4] |
Z. Guan and J. F. Lu, Basic of Numerical Analysis(Chinese),, 2nd edition, (2010). Google Scholar |
[5] |
A. Isidori, Nonlinear Control Systems: An Introduction,, 3rd edition, (1995).
|
[6] |
D. R. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific Computing,, 3rd edition, (2002).
|
[7] |
I. E. Lagaris, A. Likas and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations,, IEEE Transactions on Neural Networks, 9 (1998), 987.
doi: 10.1109/72.712178. |
[8] |
H. Lee and I. S. Kang, Neural algorithm for solving differential equations,, Journal of Computational Physics, 91 (1990), 110.
doi: 10.1016/0021-9991(90)90007-N. |
[9] |
K. S. McFall and J. R. Mahan, Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions,, IEEE Transactions on Neural Networks, 20 (2009), 1221.
doi: 10.1109/TNN.2009.2020735. |
[10] |
S. Mehrkanoon, T. Falck and J. A. K. Suykens, Approximate solutions to ordinary differential equations using least squares support vector machines,, IEEE Trans. on Neural Networks and Learning Systems, 23 (2012), 1356.
doi: 10.1109/TNNLS.2012.2202126. |
[11] |
M. Popescu, On minimum quadratic functional control of affine nonlinear systems,, Nonlinear Analysis: Theory, 56 (2004), 1165.
doi: 10.1016/j.na.2003.11.009. |
[12] |
J. I. Ramos, Linearization techniques for singular initial-value problems of ordinary differential equations,, Applied Mathematics and Computation, 161 (2005), 525.
doi: 10.1016/j.amc.2003.12.047. |
[13] |
P. Ramuhalli, L. Udpa and S. S. Udpa, Finite-element neural networks for solving differential equations,, IEEE Transactions on Neural Networks, 16 (2005), 1381.
doi: 10.1109/TNN.2005.857945. |
[14] |
J. A. K. Suykens, T. V. Gestel, J. Brabanter,B. D. Moor and J. Vandewalle, Least Squares Support Vector Machines,, 1st edition, (2002). Google Scholar |
[15] |
J. A. K. Suykens, J. Vandewalle and B. D. Moor, Optimal control by least squares support vector machines,, Neural Networks, 14 (2001), 23.
doi: 10.1016/S0893-6080(00)00077-0. |
[16] |
I. G. Tsoulos, D. Gavrilis and E. Glavas, Solving differential equations with constructed neural networks,, Neurocomputing, 72 (2009), 2385.
doi: 10.1016/j.neucom.2008.12.004. |
[17] |
V. Vapnik, The Nature of Statistical Learning Theory,, 1st edition, ().
|
[18] |
A. M. Wazwaz, A new method for solving initial value problems in second-order ordinary differential equations,, Applied Mathematics and Computation, 128 (2002), 45.
doi: 10.1016/S0096-3003(01)00021-2. |
[1] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[2] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[3] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[4] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[5] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[6] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[7] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[8] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[9] |
Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491 |
[10] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[11] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[12] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[13] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[14] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[15] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[16] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[17] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[18] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[19] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[20] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]