Citation: |
[1] |
M. V. Afonso, J. M. Bioucas-Dias and M. A. Figueiredo, An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems, IEEE Trans. Imag. Process., 20 (2011), 681-695.doi: 10.1109/TIP.2010.2076294. |
[2] |
D. P. Bertsekas, Multiplier methods: A survey, Automatica, 12 (1976), 133-145.doi: 10.1016/0005-1098(76)90077-7. |
[3] |
D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, 1982. |
[4] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1-122.doi: 10.1561/2200000016. |
[5] |
G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems, Math. Program., 64 (1994), 81-101.doi: 10.1007/BF01582566. |
[6] |
J. Eckstein, Some saddle-function splitting methods for convex programming, Optim. Methods Softw., 4 (1994), 75-83.doi: 10.1080/10556789408805578. |
[7] |
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293-318.doi: 10.1007/BF01581204. |
[8] |
J. Eckstein and M. Fukushima, Some reformulation and applications of the alternating direction method of multipliers, in Large Scale Optimization: State of the Art (Eds. W. W. Hager, et al.), Kluwer Academic Publishers, 1994, 115-134. |
[9] |
E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman, UCLA CAM Report, 2009, 9-31. |
[10] |
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York, 2003. |
[11] |
X. L. Fu and B. S. He, Self-adaptive projection-based prediction-correction method for constrained variational inequalities, Front. Math. China, 5 (2010), 3-21.doi: 10.1007/s11464-009-0045-1. |
[12] |
M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems, Comput. Optim. Appl., 1 (1992), 93-111.doi: 10.1007/BF00247655. |
[13] |
D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems (eds. M. Fortin and R. Glowinski), 299-331, North-Holland, Amsterdam, 1983.doi: 10.1016/S0168-2024(08)70034-1. |
[14] |
R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984. |
[15] |
R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.doi: 10.1137/1.9781611970838. |
[16] |
T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM J. Imag. Sci., 2 (2009), 323-343.doi: 10.1137/080725891. |
[17] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, 1996. |
[18] |
B. He, L. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, Math. Program., 92 (2002), 103-118.doi: 10.1007/s101070100280. |
[19] |
B. He, L. Liao and X. Wang, Proximal-like contraction methods for monotone variational inequalities in a unified framework, Comput. Optim. Appl., 51 (2012), 649-679.doi: 10.1007/s10589-010-9372-0. |
[20] |
B. He and H. Yang, Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities, Oper. Res. Lett., 23 (1998), 151-161.doi: 10.1016/S0167-6377(98)00044-3. |
[21] |
B. He and X. Yuan, On the $\mathcalO(1/t)$ convergence rate of the alternating direction method, SIAM J. Numer. Anal., 50 (2012), 700-709.doi: 10.1137/110836936. |
[22] |
M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory App., 4 (1969), 303-320.doi: 10.1007/BF00927673. |
[23] |
Z. Lin, M. Chen, L. Wu and Y. Ma, The augmented lagrange multiplier method for exact recovery of a corrupted low-rank matrices, preprint, arXiv:1009.5055 |
[24] |
A. Nagurney, Network Economics, A Variational Inequality Approach, Kluwer Academics Publishers, London, 1993.doi: 10.1007/978-94-011-2178-1. |
[25] |
M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization (ed. R. Fletcher), Academic Press, New York, 1969, 283-298. |
[26] |
S. Ramani and J. A. Fessler, Parallel mr image reconstruction using augmented lagrangian methods, IEEE Trans. Medical Imaging, 30 (2011), 694-706.doi: 10.1109/TMI.2010.2093536. |
[27] |
R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1 (1976), 97-116.doi: 10.1287/moor.1.2.97. |
[28] |
Y. Shen, Partial convolution total variation problem by augmented Lagrangian-based proximal point descent algorithm, submitted to J. Comput. Math., (2013). |
[29] |
Y. Shen and B. He, New augmented Lagrangian-based proximal point algorithms for constrained optimization, Submitted to Front. Math. China, (2011X). |
[30] |
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging. Sci., 1 (2008), 248-272.doi: 10.1137/080724265. |
[31] |
J. Yang and Y. Zhang, Alternating direction algorithms for $l_1$-problems in compressive sensing, SIAM J. Sci. Comput., 33 (2011), 250-278.doi: 10.1137/090777761. |
[32] |
J. Yang, Y. Zhang and W. Yin, An efficient tvl1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842-2865.doi: 10.1137/080732894. |
[33] |
W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for $l_1$-minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008), 143-168.doi: 10.1137/070703983. |