• Previous Article
    Solving structural engineering design optimization problems using an artificial bee colony algorithm
  • JIMO Home
  • This Issue
  • Next Article
    Relaxed augmented Lagrangian-based proximal point algorithms for convex optimization with linear constraints
July  2014, 10(3): 761-776. doi: 10.3934/jimo.2014.10.761

A hydrothermal problem with non-smooth Lagrangian

1. 

University of Oviedo, Department of Mathematics, E.P.I, Campus of Viesques, Gijón, 33203, Spain, Spain, Spain, Spain

Received  September 2012 Revised  June 2013 Published  November 2013

This paper deals with the optimization of a hydrothermal problem that considers a non-smooth Lagrangian $L(t ,z,z^{\prime})$. We consider a general case where the functions $L_{z^{\prime}}(t ,\cdot,\cdot)$ and $L_{z}(t ,\cdot ,\cdot)$ are discontinuous in $\{(t,z,z^{\prime})/z^{\prime}=\phi(t,z)\}$, which is the borderline point between two power generation zones. This situation arises in problems of optimization of hydrothermal systems where the thermal plant input-output curve considers the shape of the cost curve in the neighborhood of the valve points. The problem shall be formulated in the framework of nonsmooth analysis, using the generalized (or Clarke's) gradient. We shall obtain a necessary minimum condition and we shall generalize the known result (smooth transition) that the derivative of the minimum presents a constancy interval. Finally, we shall present an example.
Citation: Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761
References:
[1]

N. Amjady and H. Nasiri-Rad, Solution of nonconvex and nonsmooth economic dispatch by a new Adaptive Real Coded Genetic Algorithm,, Expert Syst. Appl., 37 (2010), 5239.  doi: 10.1016/j.eswa.2009.12.084.  Google Scholar

[2]

L. Bayón, J. M. Grau, M. M. Ruiz and P. M. Suárez, Nonsmooth Optimization of Hydrothermal Problems,, J. Comput. Appl. Math., 192 (2006), 11.  doi: 10.1016/j.cam.2005.04.048.  Google Scholar

[3]

L. Bayón, J. M. Grau, M. M. Ruiz and P. M. Suárez, An optimization problem in deregulated electricity markets solved with the nonsmooth maximum principle,, Int. J. Comput. Math., 86 (2009), 237.  doi: 10.1080/00207160701864483.  Google Scholar

[4]

L. Bayón, J. Grau, M. M. Ruiz and P.M. Suárez, A Constrained and Nonsmooth Hydrothermal Problem,, Appl. Math. Comput., 209 (2009), 10.  doi: 10.1016/j.amc.2008.06.013.  Google Scholar

[5]

L. Bayón, J. M. Grau, M. M. Ruiz and P. M. Suárez, Algorithm for calculating the analytic solution for economic dispatch with multiple fuel units,, Comput. Math. Appl., 62 (2011), 2225.  doi: 10.1016/j.camwa.2011.07.008.  Google Scholar

[6]

C. L. Chiang, Genetic algorithm for static power economic dispatch,, Computer Science and Information Engineering, (2009), 646.  doi: 10.1109/CSIE.2009.440.  Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis,, John Wiley & Sons, (1983).   Google Scholar

[8]

L. S. Coelho and V. C. Mariani, Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect,, IEEE Trans. Power Syst., 21 (2006), 989.   Google Scholar

[9]

A. D. Ioffe and R. T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems,, Calc. Var. Partial Dif., 4 (1996), 59.  doi: 10.1007/BF01322309.  Google Scholar

[10]

D. Liu and Y. Cai, Taguchi method for solving the economic dispatch problem with nonSmooth cost functions,, IEEE Trans. Power Syst., 20 (2005), 2006.  doi: 10.1109/TPWRS.2005.857939.  Google Scholar

[11]

P. D. Loewen and R. T. Rockafellar, New necessary conditions for the generalized problem of Bolza,, SIAM J. Control Optim., 34 (1996), 1496.  doi: 10.1137/S0363012994275932.  Google Scholar

[12]

C. Marcelli, Variational problems with nonconvex, noncoercive, highly discontinuous integrands: characterization and existence of minimizers,, SIAM J. Control Optim., 40 (2002), 1473.  doi: 10.1137/S036301299936141X.  Google Scholar

[13]

C. Marcelli, E. Outkine and M. Sytchev, Remarks on necessary conditions for minimizers of one-dimensional variational problems,, Nonlinear Anal., 48 (2002), 979.  doi: 10.1016/S0362-546X(00)00228-5.  Google Scholar

[14]

J. B. Park, K. S. Lee, J. R. Shin and K. Y. Lee, A particle swarm optimization for economic dispatch with nonsmooth cost functions,, IEEE Trans. Power Syst., 20 (2005), 34.  doi: 10.1109/TPWRS.2004.831275.  Google Scholar

[15]

J. L. Troutman, Variational Calculus with Elementary Convexity,, Springer, (1983).   Google Scholar

[16]

M. T. Tsai, H. J. Gow and W. M. Lin, A novel stochastic search method for the solution of economic dispatch problems with non-convex fuel cost functions,, Int. J. Elec. Power, 33 (2011), 1070.  doi: 10.1016/j.ijepes.2011.01.026.  Google Scholar

[17]

R. Vinter and H. Zheng, The extended Euler-Lagrange condition for nonconvex variational problems,, SIAM J. Control Optim., 35 (1997), 56.  doi: 10.1137/S0363012995283133.  Google Scholar

[18]

A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control,, Wiley-Interscience, (1996).  doi: 10.1016/0140-6701(96)88715-7.  Google Scholar

[19]

X. Yuan, L. Wang, Y. Zhang and Y. Yuan, A hybrid differential evolution method for dynamic economic dispatch with valve-point effects,, Expert Syst. Appl., 36 (2009), 4042.  doi: 10.1016/j.eswa.2008.03.006.  Google Scholar

[20]

K. Zare, M. T. Haque and E. Davoodi, Solving non-convex economic dispatch problem with valve point effects using modified group search optimizer method,, Electr. Pow. Syst. Res., 84 (2012), 83.  doi: 10.1016/j.epsr.2011.10.004.  Google Scholar

show all references

References:
[1]

N. Amjady and H. Nasiri-Rad, Solution of nonconvex and nonsmooth economic dispatch by a new Adaptive Real Coded Genetic Algorithm,, Expert Syst. Appl., 37 (2010), 5239.  doi: 10.1016/j.eswa.2009.12.084.  Google Scholar

[2]

L. Bayón, J. M. Grau, M. M. Ruiz and P. M. Suárez, Nonsmooth Optimization of Hydrothermal Problems,, J. Comput. Appl. Math., 192 (2006), 11.  doi: 10.1016/j.cam.2005.04.048.  Google Scholar

[3]

L. Bayón, J. M. Grau, M. M. Ruiz and P. M. Suárez, An optimization problem in deregulated electricity markets solved with the nonsmooth maximum principle,, Int. J. Comput. Math., 86 (2009), 237.  doi: 10.1080/00207160701864483.  Google Scholar

[4]

L. Bayón, J. Grau, M. M. Ruiz and P.M. Suárez, A Constrained and Nonsmooth Hydrothermal Problem,, Appl. Math. Comput., 209 (2009), 10.  doi: 10.1016/j.amc.2008.06.013.  Google Scholar

[5]

L. Bayón, J. M. Grau, M. M. Ruiz and P. M. Suárez, Algorithm for calculating the analytic solution for economic dispatch with multiple fuel units,, Comput. Math. Appl., 62 (2011), 2225.  doi: 10.1016/j.camwa.2011.07.008.  Google Scholar

[6]

C. L. Chiang, Genetic algorithm for static power economic dispatch,, Computer Science and Information Engineering, (2009), 646.  doi: 10.1109/CSIE.2009.440.  Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis,, John Wiley & Sons, (1983).   Google Scholar

[8]

L. S. Coelho and V. C. Mariani, Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect,, IEEE Trans. Power Syst., 21 (2006), 989.   Google Scholar

[9]

A. D. Ioffe and R. T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems,, Calc. Var. Partial Dif., 4 (1996), 59.  doi: 10.1007/BF01322309.  Google Scholar

[10]

D. Liu and Y. Cai, Taguchi method for solving the economic dispatch problem with nonSmooth cost functions,, IEEE Trans. Power Syst., 20 (2005), 2006.  doi: 10.1109/TPWRS.2005.857939.  Google Scholar

[11]

P. D. Loewen and R. T. Rockafellar, New necessary conditions for the generalized problem of Bolza,, SIAM J. Control Optim., 34 (1996), 1496.  doi: 10.1137/S0363012994275932.  Google Scholar

[12]

C. Marcelli, Variational problems with nonconvex, noncoercive, highly discontinuous integrands: characterization and existence of minimizers,, SIAM J. Control Optim., 40 (2002), 1473.  doi: 10.1137/S036301299936141X.  Google Scholar

[13]

C. Marcelli, E. Outkine and M. Sytchev, Remarks on necessary conditions for minimizers of one-dimensional variational problems,, Nonlinear Anal., 48 (2002), 979.  doi: 10.1016/S0362-546X(00)00228-5.  Google Scholar

[14]

J. B. Park, K. S. Lee, J. R. Shin and K. Y. Lee, A particle swarm optimization for economic dispatch with nonsmooth cost functions,, IEEE Trans. Power Syst., 20 (2005), 34.  doi: 10.1109/TPWRS.2004.831275.  Google Scholar

[15]

J. L. Troutman, Variational Calculus with Elementary Convexity,, Springer, (1983).   Google Scholar

[16]

M. T. Tsai, H. J. Gow and W. M. Lin, A novel stochastic search method for the solution of economic dispatch problems with non-convex fuel cost functions,, Int. J. Elec. Power, 33 (2011), 1070.  doi: 10.1016/j.ijepes.2011.01.026.  Google Scholar

[17]

R. Vinter and H. Zheng, The extended Euler-Lagrange condition for nonconvex variational problems,, SIAM J. Control Optim., 35 (1997), 56.  doi: 10.1137/S0363012995283133.  Google Scholar

[18]

A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control,, Wiley-Interscience, (1996).  doi: 10.1016/0140-6701(96)88715-7.  Google Scholar

[19]

X. Yuan, L. Wang, Y. Zhang and Y. Yuan, A hybrid differential evolution method for dynamic economic dispatch with valve-point effects,, Expert Syst. Appl., 36 (2009), 4042.  doi: 10.1016/j.eswa.2008.03.006.  Google Scholar

[20]

K. Zare, M. T. Haque and E. Davoodi, Solving non-convex economic dispatch problem with valve point effects using modified group search optimizer method,, Electr. Pow. Syst. Res., 84 (2012), 83.  doi: 10.1016/j.epsr.2011.10.004.  Google Scholar

[1]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[2]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[3]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[4]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[5]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[6]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[7]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[8]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[9]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[10]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[13]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[14]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[15]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[16]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[17]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[18]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[19]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[20]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

[Back to Top]