
Previous Article
Optimal stochastic investment games under Markov regime switching market
 JIMO Home
 This Issue

Next Article
A hydrothermal problem with nonsmooth Lagrangian
Solving structural engineering design optimization problems using an artificial bee colony algorithm
1.  School of Mathematics and Computer Applications, Thapar University Patiala, Patiala  147004, Punjab, India 
References:
[1] 
B. Akay and D. Karaboga, Artificial bee colony algorithm for largescale problems and engineering design optimization, Journal of Intelligent Manufacturing, 23 (2012), 10011014. doi: 10.1007/s1084501003934. 
[2] 
J. S. Arora, Introduction to Optimum Design, McGrawHill, New York, 1989. 
[3] 
A. D. Belegundu, A Study of Mathematical Programming Methods for Structural Optimization, PhD thesis, Department of Civil and Environmental Engineering, University of Iowa, Iowa, USA, 1982. 
[4] 
L. C. Cagnina, S. C. Esquivel and C. A. C. Coello, Solving engineering optimization problems with the simple constrained particle swarm optimizer, Informatica, 32 (2008), 319326. 
[5] 
L. S. Coelho, Gaussian quantumbehaved particle swarm optimization approaches for constrained engineering design problems, Expert Systems with Applications, 37 (2010), 16761683. doi: 10.1016/j.eswa.2009.06.044. 
[6] 
C. A. C. Coello, Treating constraints as objectives for singleobjective evolutionary optimization, Engineering Optimization, 32 (2000), 275308. doi: 10.1080/03052150008941301. 
[7] 
C. A. C. Coello, Use of a self adaptive penalty approach for engineering optimization problems, Computers in Industry, 41 (2000), 113127. doi: 10.1016/S01663615(99)000469. 
[8] 
C. A. C. Coello and E. M. Montes, Constraint handling in genetic algorithms through the use of dominancebased tournament selection, Advanced Engineering Informatics, 16 (2002), 193203. doi: 10.1016/S14740346(02)000113. 
[9] 
K. Deb, Optimal design of a welded beam via genetic algorithms, AIAA Journal, 29 (1991), 20132015. 
[10] 
K. Deb, An efficient constraint handling method for genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 186 (2000), 311338. doi: 10.1016/S00457825(99)003898. 
[11] 
K. Deb and A. S. Gene, A robust optimal design technique for mechanical component design, (Eds. D. Dasgupta, Z. Michalewicz,), Evolutionary Algorithms in Engineering Applications, Springer, Berlin, (1997), 497514. doi: 10.1007/9783662034231_27. 
[12] 
K. Deb and M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design, Computer Science and Informatics, 26 (1986), 3045. 
[13] 
G. G. Dimopoulos, Mixedvariable engineering optimization based on evolutionary and social metaphors, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 803817. doi: 10.1016/j.cma.2006.06.010. 
[14] 
M. Fesanghary, M. Mahdavi, M. MinaryJolandan and Y. Alizadeh, Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 30803091. doi: 10.1016/j.cma.2008.02.006. 
[15] 
A. H. Gandomi, X. S. Yang, and A. H. Alavi, Mixed variable structural optimization using firefly algorithm,, Computers & Structures, 89 (): 2325. 
[16] 
A. H. Gandomi, X. S. Yang and A. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Engineering with Computers, 29 (2003), 1735. doi: 10.1007/s003660110241y. 
[17] 
Q. He and L. Wang, An effective co  evolutionary particle swarm optimization for constrained engineering design problems, Engineering Applications of Artificial Intelligence, 20 (2007), 8999. doi: 10.1016/j.engappai.2006.03.003. 
[18] 
S. He, E. Prempain and Q. H. Wu, An improved particle swarm optimizer for mechanical design optimization problems, Engineering Optimization, 36 (2004), 585605. doi: 10.1080/03052150410001704854. 
[19] 
A. R. Hedar and M. Fukushima, Derivative  free filter simulated annealing method for constrained continuous global optimization, Journal of Global Optimization, 35 (2006), 521549. doi: 10.1007/s108980053693z. 
[20] 
D. M. Himmelblau, Applied Nonlinear Programming, McGrawHill, New York, 1972. 
[21] 
A. Homaifar, S. H. Y. Lai and X. Qi, Constrained optimization via genetic algorithms, Simulation, 62 (1994), 242254. doi: 10.1177/003754979406200405. 
[22] 
Y. L. Hsu and T. C. Liu, Developing a fuzzy proportional derivative controller optimization engine for engineering design optimization problems, Engineering Optimization, 39 (2007), 679700. doi: 10.1080/03052150701252664. 
[23] 
X. H. Hu, R. C. Eberhart and Y. H. Shi, Engineering optimization with particle swarm, Proceedings of the 2003 IEEE Swarm Intelligence Symposium, (2003), 5357. 
[24] 
S. F. Hwang and R. S. He, A hybrid realparameter genetic algorithm for function optimization, Advanced Engineering Informatics, 20 (2006), 721. doi: 10.1016/j.aei.2005.09.001. 
[25] 
B. K. Kannan and S. N. Kramer, An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, Transactions of the ASME, Journal of Mechanical Design, 116 (1994), 405411. doi: 10.1115/1.2919393. 
[26] 
D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical report, TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005. 
[27] 
D. Karaboga and B. Akay, A comparative study of artificial bee colony algorithm, Applied Mathematics and Computation, 214 (2009), 108132. doi: 10.1016/j.amc.2009.03.090. 
[28] 
D. Karaboga, B. Gorkemli, C. Ozturk and N. Karaboga, A comprehensive survey: Artificial bee colony (abc) algorithm and applications, Artificial Intelligence Review ,(2012), 137. doi: 10.1007/s1046201293280. 
[29] 
D. Karaboga and C. Ozturk, A novel clustering approach: Artificial bee colony (ABC) algorithm, Applied Soft Computing, 11 (2011), 652657. doi: 10.1016/j.asoc.2009.12.025. 
[30] 
A. Kaveh and S. Talatahari, Engineering optimization with hybrid particle swarm and ant colony optimization, Asian journal of civil engineering (building and housing), 10 (2009), 611628. 
[31] 
A. Kaveh and S. Talatahari, An improved ant colony optimization for constrained engineering design problems, Engineering Computations, 27 (2010), 155182. doi: 10.1108/02644401011008577. 
[32] 
K. S. Lee and Z. W. Geem, A new metaheuristic algorithm for continuous engineering optimization: harmony search theory and practice, Computer Methods in Applied Mechanics and Engineering, 194 (2005), 39023933. doi: 10.1016/j.cma.2004.09.007. 
[33] 
M. Mahdavi, M. Fesanghary and E. Damangir, An improved harmony search algorithm for solving optimization problems, Applied Mathematics and Computation, 188 (2007), 15671579. doi: 10.1016/j.amc.2006.11.033. 
[34] 
V. K. Mehta and B. Dasgupta, A constrained optimization algorithm based on the simplex search method, Engineering Optimization, 44 (2012), 537550. doi: 10.1080/0305215X.2011.598520. 
[35] 
Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer  Verlag, Berlin, 1994. 
[36] 
E. M. Montes and C. A. C. Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, International Journal of General Systems, 37 (2008), 443473. doi: 10.1080/03081070701303470. 
[37] 
E. M. Montes, C. A. C. Coello, J. V. Reyes and L. M. Davila, Multiple trial vectors in differential evolution for engineering design, Engineering Optimization, 39 (2007), 567589. doi: 10.1080/03052150701364022. 
[38] 
M. G. H. Omran and A. Salman, Constrained optimization using CODEQ, Chaos, Solitons & Fractals, 42 (2009), 662668. 
[39] 
K. M. Ragsdell and D. T. Phillips, Optimal design of a class of welded structures using geometric programming, ASME Journal of Engineering for Industries, 98 (1976), 10211025. doi: 10.1115/1.3438995. 
[40] 
K. H. Raj, R. S. Sharma, G. S. Mishra, A. Dua and C. Patvardhan, An evolutionary computational technique for constrained optimisation in engineering design, Journal of the Institution of Engineers India Part Me Mechanical Engineering Division, 86 (2005), 121128. 
[41] 
S. S. Rao, Engineering Optimization: Theory and Practice, 3rd edition, John Wiley & Sons, Chichester, 1996. 
[42] 
T. Ray and K. M. Liew, Society and civilization : An optimization algorithm based on the simulation of social behavior, IEEE Transactions on Evolutionary Computation, 7 (2003), 386396. doi: 10.1109/TEVC.2003.814902. 
[43] 
T. Ray and P. Saini, Engineering design optimization using a swarm with an intelligent information sharing among individuals, Engineering Optimization, 33 (2001), 735748. doi: 10.1080/03052150108940941. 
[44] 
E. Sandgren, Nonlinear integer and discrete programming in mechanical design, Proceedings of the ASME Design Technology Conference, F.L. Kissimine, 1988, 95105. 
[45] 
Y. Shi and R. C. Eberhart, A modified particle swarm optimizer, IEEE International Conference on Evolutionary Computation, Piscataway, NJ: IEEE Press, (1998), 6973. 
[46] 
J. Tsai, Global optimization of nonlinear fractional programming problems in engineering design, Engineering Optimization, 37 (2005), 399409. doi: 10.1080/03052150500066737. 
[47] 
C. Zhang and H. P. Wang, Mixeddiscrete nonlinear optimization with simulated annealing, Engineering Optimization, 21 (1993), 277291. doi: 10.1080/03052159308940980. 
[48] 
M. Zhang, W. Luo and X. Wang, Differential evolution with dynamic stochastic selection for constrained optimization, Information Sciences, 178 (2008), 30433074. doi: 10.1016/j.ins.2008.02.014. 
show all references
References:
[1] 
B. Akay and D. Karaboga, Artificial bee colony algorithm for largescale problems and engineering design optimization, Journal of Intelligent Manufacturing, 23 (2012), 10011014. doi: 10.1007/s1084501003934. 
[2] 
J. S. Arora, Introduction to Optimum Design, McGrawHill, New York, 1989. 
[3] 
A. D. Belegundu, A Study of Mathematical Programming Methods for Structural Optimization, PhD thesis, Department of Civil and Environmental Engineering, University of Iowa, Iowa, USA, 1982. 
[4] 
L. C. Cagnina, S. C. Esquivel and C. A. C. Coello, Solving engineering optimization problems with the simple constrained particle swarm optimizer, Informatica, 32 (2008), 319326. 
[5] 
L. S. Coelho, Gaussian quantumbehaved particle swarm optimization approaches for constrained engineering design problems, Expert Systems with Applications, 37 (2010), 16761683. doi: 10.1016/j.eswa.2009.06.044. 
[6] 
C. A. C. Coello, Treating constraints as objectives for singleobjective evolutionary optimization, Engineering Optimization, 32 (2000), 275308. doi: 10.1080/03052150008941301. 
[7] 
C. A. C. Coello, Use of a self adaptive penalty approach for engineering optimization problems, Computers in Industry, 41 (2000), 113127. doi: 10.1016/S01663615(99)000469. 
[8] 
C. A. C. Coello and E. M. Montes, Constraint handling in genetic algorithms through the use of dominancebased tournament selection, Advanced Engineering Informatics, 16 (2002), 193203. doi: 10.1016/S14740346(02)000113. 
[9] 
K. Deb, Optimal design of a welded beam via genetic algorithms, AIAA Journal, 29 (1991), 20132015. 
[10] 
K. Deb, An efficient constraint handling method for genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 186 (2000), 311338. doi: 10.1016/S00457825(99)003898. 
[11] 
K. Deb and A. S. Gene, A robust optimal design technique for mechanical component design, (Eds. D. Dasgupta, Z. Michalewicz,), Evolutionary Algorithms in Engineering Applications, Springer, Berlin, (1997), 497514. doi: 10.1007/9783662034231_27. 
[12] 
K. Deb and M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design, Computer Science and Informatics, 26 (1986), 3045. 
[13] 
G. G. Dimopoulos, Mixedvariable engineering optimization based on evolutionary and social metaphors, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 803817. doi: 10.1016/j.cma.2006.06.010. 
[14] 
M. Fesanghary, M. Mahdavi, M. MinaryJolandan and Y. Alizadeh, Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 30803091. doi: 10.1016/j.cma.2008.02.006. 
[15] 
A. H. Gandomi, X. S. Yang, and A. H. Alavi, Mixed variable structural optimization using firefly algorithm,, Computers & Structures, 89 (): 2325. 
[16] 
A. H. Gandomi, X. S. Yang and A. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Engineering with Computers, 29 (2003), 1735. doi: 10.1007/s003660110241y. 
[17] 
Q. He and L. Wang, An effective co  evolutionary particle swarm optimization for constrained engineering design problems, Engineering Applications of Artificial Intelligence, 20 (2007), 8999. doi: 10.1016/j.engappai.2006.03.003. 
[18] 
S. He, E. Prempain and Q. H. Wu, An improved particle swarm optimizer for mechanical design optimization problems, Engineering Optimization, 36 (2004), 585605. doi: 10.1080/03052150410001704854. 
[19] 
A. R. Hedar and M. Fukushima, Derivative  free filter simulated annealing method for constrained continuous global optimization, Journal of Global Optimization, 35 (2006), 521549. doi: 10.1007/s108980053693z. 
[20] 
D. M. Himmelblau, Applied Nonlinear Programming, McGrawHill, New York, 1972. 
[21] 
A. Homaifar, S. H. Y. Lai and X. Qi, Constrained optimization via genetic algorithms, Simulation, 62 (1994), 242254. doi: 10.1177/003754979406200405. 
[22] 
Y. L. Hsu and T. C. Liu, Developing a fuzzy proportional derivative controller optimization engine for engineering design optimization problems, Engineering Optimization, 39 (2007), 679700. doi: 10.1080/03052150701252664. 
[23] 
X. H. Hu, R. C. Eberhart and Y. H. Shi, Engineering optimization with particle swarm, Proceedings of the 2003 IEEE Swarm Intelligence Symposium, (2003), 5357. 
[24] 
S. F. Hwang and R. S. He, A hybrid realparameter genetic algorithm for function optimization, Advanced Engineering Informatics, 20 (2006), 721. doi: 10.1016/j.aei.2005.09.001. 
[25] 
B. K. Kannan and S. N. Kramer, An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, Transactions of the ASME, Journal of Mechanical Design, 116 (1994), 405411. doi: 10.1115/1.2919393. 
[26] 
D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical report, TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005. 
[27] 
D. Karaboga and B. Akay, A comparative study of artificial bee colony algorithm, Applied Mathematics and Computation, 214 (2009), 108132. doi: 10.1016/j.amc.2009.03.090. 
[28] 
D. Karaboga, B. Gorkemli, C. Ozturk and N. Karaboga, A comprehensive survey: Artificial bee colony (abc) algorithm and applications, Artificial Intelligence Review ,(2012), 137. doi: 10.1007/s1046201293280. 
[29] 
D. Karaboga and C. Ozturk, A novel clustering approach: Artificial bee colony (ABC) algorithm, Applied Soft Computing, 11 (2011), 652657. doi: 10.1016/j.asoc.2009.12.025. 
[30] 
A. Kaveh and S. Talatahari, Engineering optimization with hybrid particle swarm and ant colony optimization, Asian journal of civil engineering (building and housing), 10 (2009), 611628. 
[31] 
A. Kaveh and S. Talatahari, An improved ant colony optimization for constrained engineering design problems, Engineering Computations, 27 (2010), 155182. doi: 10.1108/02644401011008577. 
[32] 
K. S. Lee and Z. W. Geem, A new metaheuristic algorithm for continuous engineering optimization: harmony search theory and practice, Computer Methods in Applied Mechanics and Engineering, 194 (2005), 39023933. doi: 10.1016/j.cma.2004.09.007. 
[33] 
M. Mahdavi, M. Fesanghary and E. Damangir, An improved harmony search algorithm for solving optimization problems, Applied Mathematics and Computation, 188 (2007), 15671579. doi: 10.1016/j.amc.2006.11.033. 
[34] 
V. K. Mehta and B. Dasgupta, A constrained optimization algorithm based on the simplex search method, Engineering Optimization, 44 (2012), 537550. doi: 10.1080/0305215X.2011.598520. 
[35] 
Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer  Verlag, Berlin, 1994. 
[36] 
E. M. Montes and C. A. C. Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, International Journal of General Systems, 37 (2008), 443473. doi: 10.1080/03081070701303470. 
[37] 
E. M. Montes, C. A. C. Coello, J. V. Reyes and L. M. Davila, Multiple trial vectors in differential evolution for engineering design, Engineering Optimization, 39 (2007), 567589. doi: 10.1080/03052150701364022. 
[38] 
M. G. H. Omran and A. Salman, Constrained optimization using CODEQ, Chaos, Solitons & Fractals, 42 (2009), 662668. 
[39] 
K. M. Ragsdell and D. T. Phillips, Optimal design of a class of welded structures using geometric programming, ASME Journal of Engineering for Industries, 98 (1976), 10211025. doi: 10.1115/1.3438995. 
[40] 
K. H. Raj, R. S. Sharma, G. S. Mishra, A. Dua and C. Patvardhan, An evolutionary computational technique for constrained optimisation in engineering design, Journal of the Institution of Engineers India Part Me Mechanical Engineering Division, 86 (2005), 121128. 
[41] 
S. S. Rao, Engineering Optimization: Theory and Practice, 3rd edition, John Wiley & Sons, Chichester, 1996. 
[42] 
T. Ray and K. M. Liew, Society and civilization : An optimization algorithm based on the simulation of social behavior, IEEE Transactions on Evolutionary Computation, 7 (2003), 386396. doi: 10.1109/TEVC.2003.814902. 
[43] 
T. Ray and P. Saini, Engineering design optimization using a swarm with an intelligent information sharing among individuals, Engineering Optimization, 33 (2001), 735748. doi: 10.1080/03052150108940941. 
[44] 
E. Sandgren, Nonlinear integer and discrete programming in mechanical design, Proceedings of the ASME Design Technology Conference, F.L. Kissimine, 1988, 95105. 
[45] 
Y. Shi and R. C. Eberhart, A modified particle swarm optimizer, IEEE International Conference on Evolutionary Computation, Piscataway, NJ: IEEE Press, (1998), 6973. 
[46] 
J. Tsai, Global optimization of nonlinear fractional programming problems in engineering design, Engineering Optimization, 37 (2005), 399409. doi: 10.1080/03052150500066737. 
[47] 
C. Zhang and H. P. Wang, Mixeddiscrete nonlinear optimization with simulated annealing, Engineering Optimization, 21 (1993), 277291. doi: 10.1080/03052159308940980. 
[48] 
M. Zhang, W. Luo and X. Wang, Differential evolution with dynamic stochastic selection for constrained optimization, Information Sciences, 178 (2008), 30433074. doi: 10.1016/j.ins.2008.02.014. 
[1] 
Guangzhou Chen, Guijian Liu, Jiaquan Wang, Ruzhong Li. Identification of water quality model parameters using artificial bee colony algorithm. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 157165. doi: 10.3934/naco.2012.2.157 
[2] 
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 321332. doi: 10.3934/naco.2020028 
[3] 
Roya Soltani, Seyed Jafar Sadjadi, Mona Rahnama. Artificial intelligence combined with nonlinear optimization techniques and their application for yield curve optimization. Journal of Industrial and Management Optimization, 2017, 13 (4) : 17011721. doi: 10.3934/jimo.2017014 
[4] 
A. Zeblah, Y. Massim, S. Hadjeri, A. Benaissa, H. Hamdaoui. Optimization for seriesparallel continuous power systems with buffers under reliability constraints using ant colony. Journal of Industrial and Management Optimization, 2006, 2 (4) : 467479. doi: 10.3934/jimo.2006.2.467 
[5] 
Hassen Aydi, Ayman Kachmar. Magnetic vortices for a GinzburgLandau type energy with discontinuous constraint. II. Communications on Pure and Applied Analysis, 2009, 8 (3) : 977998. doi: 10.3934/cpaa.2009.8.977 
[6] 
Ziteng Wang, ShuCherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and interrelations. Journal of Industrial and Management Optimization, 2013, 9 (4) : 9831001. doi: 10.3934/jimo.2013.9.983 
[7] 
Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 1929. doi: 10.3934/naco.2012.2.19 
[8] 
Omar Saber Qasim, Ahmed Entesar, Waleed AlHayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 633644. doi: 10.3934/naco.2021001 
[9] 
Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems  S, 2019, 12 (4&5) : 979987. doi: 10.3934/dcdss.2019066 
[10] 
David Russell. Structural parameter optimization of linear elastic systems. Communications on Pure and Applied Analysis, 2011, 10 (5) : 15171536. doi: 10.3934/cpaa.2011.10.1517 
[11] 
M. S. Lee, B. S. Goh, H. G. Harno, K. H. Lim. On a twophase approximate greatest descent method for nonlinear optimization with equality constraints. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 315326. doi: 10.3934/naco.2018020 
[12] 
JeanPaul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated locationallocation problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 12151225. doi: 10.3934/jimo.2016.12.1215 
[13] 
Saeid Ansary Karbasy, Maziar Salahi. Quadratic optimization with two ball constraints. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 165175. doi: 10.3934/naco.2019046 
[14] 
K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 413440. doi: 10.3934/naco.2018026 
[15] 
Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial and Management Optimization, 2016, 12 (4) : 11991214. doi: 10.3934/jimo.2016.12.1199 
[16] 
Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial and Management Optimization, 2012, 8 (2) : 469484. doi: 10.3934/jimo.2012.8.469 
[17] 
Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527547. doi: 10.3934/jgm.2014.6.527 
[18] 
Michal Kočvara, Jiří V. Outrata. Inverse truss design as a conic mathematical program with equilibrium constraints. Discrete and Continuous Dynamical Systems  S, 2017, 10 (6) : 13291350. doi: 10.3934/dcdss.2017071 
[19] 
Bertrand Maury, Aude RoudneffChupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion modeling. Networks and Heterogeneous Media, 2011, 6 (3) : 485519. doi: 10.3934/nhm.2011.6.485 
[20] 
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 29072946. doi: 10.3934/dcds.2020391 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]