\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A DC programming approach for sensor network localization with uncertainties in anchor positions

Abstract Related Papers Cited by
  • The sensor network localization with uncertainties in anchor positions has been studied in this paper. We formulate this problem as a DC (difference of two convex functions) programming. Then, a DC programming based algorithm has been proposed to solve such a problem. Simulation results obtained by our proposed method are better performance than those obtained by existing ones.
    Mathematics Subject Classification: Primary: 90C46, 90C90; Secondary: 90C26.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Baek and B. D. Choi, Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network, J. Ind. Manag. Optim., 5 (2009), 481-492.doi: 10.3934/jimo.2009.5.481.

    [2]

    P. Biswas, T. C. Liang, K. C. Toh, C. T. Wang and Y. Ye, Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Trans. Auto. Sci. Eng., 3 (2006), 360-371.

    [3]

    H. Cho and G. Hwang, Optimal design and analysis of a two-hop relay network under Rayleigh fading for packet delay minimization, J. Ind. Manag. Optim., 7 (2011), 607-622.doi: 10.3934/jimo.2011.7.607.

    [4]

    T. Pham Dinh and H. A. Le Thi, Convex analysis approach to d.c. programming: Theory, algorithms and applications, Acta Math. Vietnam., 22 (1997), 289-355.

    [5]

    D. Y. Gao, Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints, J. Ind. Manag. Optim., 1 (2005), 53-63.doi: 10.3934/jimo.2005.1.53.

    [6]

    K. C. Ho, X. Lu and L. Kovavisaruch, Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution, IEEE Trans. Signal Process., 55 (2007), 684-696.doi: 10.1109/TSP.2006.885744.

    [7]

    A. Jakoby, J. Boldberg and H. Messer, Source localization in shallow water in the presence of sensor location uncertainty, IEEE J. Ocean. Eng., 25 (2000), 331-336.

    [8]

    S. Kim, M. Kojima and H. Waki, Exploiting sparsity in SDP relaxation for sensor network localization. SIAM J. Optim., 20 (2009), 192-215.doi: 10.1137/080713380.

    [9]

    K. W. K. Lui, W.-K. Ma, H. C. So and F. K. W. Chan, Semi-definite programming algorithms for sensor network node localization with uncertainties in anchor positions and/or propagation speed, IEEE Trans. Signal Process., 57 (2009), 752-763.doi: 10.1109/TSP.2008.2007916.

    [10]

    J. More and Z. Wu, Distance geometry optimization for protein structures, J. Glob. Optim., 15 (1999), 219-234.doi: 10.1023/A:1008380219900.

    [11]

    G. Nalan, L. T. H. An and M. Moeini, Robust investment strategies with discrete asset choice constraints using dc programming, Optim., 59 (2010), 45-62.doi: 10.1080/02331930903500274.

    [12]

    P. Oguz-Ekim, J. Gomes, J. Xavier and P. Oliveira, Robust localization of nodes and time-recursive tracking in sensor networks using noisy range measurements, IEEE Trans. Signal Process., 59 (2011), 3930-3942.doi: 10.1109/TSP.2011.2153848.

    [13]

    T. K. Pong and P. Tseng, (Robust) Edge-based semidefinite programming relaxation of sensor network localization, Math. Program., 130 (2011), 321-358.doi: 10.1007/s10107-009-0338-x.

    [14]

    Q. J. Shi, C. He, H. Y. Chen and L. G. Jiang, Distributed wireless sensor network localization via sequential greedy optimization algorithm, IEEE Trans. Signal Proc., 58 (2010), 3328-3340.doi: 10.1109/TSP.2010.2045416.

    [15]

    A. S. Ta, L. T. H. An, D. Khadraoui and P. D. Tao, Solving Partitioning-Hub Location-Routing Problem using DCA. J. Ind. Manag. Optim., 8 (2012), 87-102.doi: 10.3934/jimo.2012.8.87.

    [16]

    H. A. Le Thi and T. Pham Dinh, The DC (difference of convex functions) Programming and DCA revisited with DC models of real world nonconvex optimization problems, Annals of Operations Research, 133 (2005), 23-46.doi: 10.1007/s10479-004-5022-1.

    [17]

    P. Tseng, Second-order cone programming relaxation of sensor network localization, SIAM J. Optim., 18 (2007), 156-185.doi: 10.1137/050640308.

    [18]

    Z. Wang, S. Zheng, Y. Ye and S. Boyd, Further relaxations of the semidefinite programming approach to sensor network localization, SIAM J. Optim., 19 (2008), 655-673.doi: 10.1137/060669395.

    [19]

    Z. B. Wang, S. C. Fang, D. Y. Gao and W. X. Xing, Global extremal conditions for multi-integer quadratic programming, J. Ind. Manag. Optim., 4 (2008), 213-225.doi: 10.3934/jimo.2008.4.213.

    [20]

    X. Xiao, J. Gu, L. Zhang and S. Zhang, A sequential convex program method to DC program with joint chance constraints, J. Ind. Manag. Optim., 8 (2012), 733-747.doi: 10.3934/jimo.2012.8.733.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(149) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return