-
Previous Article
Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times
- JIMO Home
- This Issue
-
Next Article
A DC programming approach for sensor network localization with uncertainties in anchor positions
A class of quasilinear elliptic hemivariational inequality problems on unbounded domains
1. | Department of Mathematics, Soochow University, Suzhou 215006, China, China |
2. | Department of Mathematics, Soochow University, Suzhou, 215006 |
References:
[1] |
C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.
doi: 10.3934/jimo.2007.3.519. |
[2] |
F. H. Clarke, Optimization and Nonsmooth Analysis,, John Wiley-interscience, (1983).
|
[3] |
Z. Dályay and C. Varga, An existence result for hemivariational inequalities,, Electronic J. Differential Equations, 2004 (2004), 1.
|
[4] |
K. Fan, A generalization of Tychonoff's fixed point theorem,, Math. Ann., 142 (1961), 305.
|
[5] |
F. Faraci, A. Iannizzotto, P. Kupán and C. Varga, Existence and multiplicity results for hemivariational inequalities with two parameters,, Nonlinear Anal., 67 (2007), 2654.
doi: 10.1016/j.na.2006.09.030. |
[6] |
M. Filippakis, L. Gasinski and N. S. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential,, Nonlinear Anal., 61 (2005), 61.
doi: 10.1016/j.na.2004.11.012. |
[7] |
M. Filippakis, L. Gasinski and N. S. Papageorgiou, Nontrivial solutions for resonant hemivariational inequalities,, J. Global Optim., 34 (2006), 317.
doi: 10.1007/s10898-005-4388-1. |
[8] |
L. Gasinski and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,, Chapman and Hall/CRC, (2005).
|
[9] |
F. Gazzola and V. Rădulescu, A nonsmooth critical point theory approach to some nonlinear elliptic equations in $\mathbbR^N$,, Differential Integral Equations, 13 (2000), 47.
|
[10] |
D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, Variational and Hemivariational Inequalities: Theory, Methods and Applications,, Vol. I. Unilateral analysis and unilateral mechanics. Nonconvex Optimization and its Applications, (2003).
|
[11] |
S. C. Hu and N. S. Papageorgiou, Positive solutions for nonlinear hemivariational inequalities,, J. Math. Anal. Appl., 310 (2005), 161.
doi: 10.1016/j.jmaa.2005.01.051. |
[12] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.
doi: 10.3934/jimo.2007.3.671. |
[13] |
Y. S. Huang, Positive solutions of quasilinear elliptic equations,, Topol. Meth. Nonl. Anal., 12 (1998), 91.
|
[14] |
Y. S. Huang and Y. Y. Zhou, Multiple solutions for a class of nonlinear elliptic problems with a p-Laplacian type operator,, Nonlinear Anal., 72 (2010), 3388.
doi: 10.1016/j.na.2009.12.020. |
[15] |
A. Kristály, Multiplicity results for an eigenvalue problem for hemivariational inequalities,, Set-Valued Analysis, 13 (2005), 85.
doi: 10.1007/s11228-004-6565-7. |
[16] |
A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities in strip-like domains,, J. Math. Anal. Appl., 325 (2007), 975.
doi: 10.1016/j.jmaa.2006.02.062. |
[17] |
S. J. Li and Z. M. Fang, On the stability of a dual weak vector variational inequality problem,, J. Ind. Manag. Optim., 4 (2008), 155.
doi: 10.3934/jimo.2008.4.155. |
[18] |
H. Lisei, A. E. Molnr and C. Varga, On a class of inequality problems with lack of compactness,, J. Math. Anal. Appl., 378 (2011), 741.
doi: 10.1016/j.jmaa.2010.12.041. |
[19] |
Z. H. Liu and D. Motreanu, A class of variational-hemivariational inequalities of elliptic type,, Nonlinearity, 23 (2010), 1741.
doi: 10.1088/0951-7715/23/7/012. |
[20] |
I. I. Mezei and L. Săplăcan, Existence result and applications for general variational-hemivariational inequalities on unbounded domains,, Electronic J. Differential Equations, 2009 (2009), 1.
|
[21] |
D. Motreanu and P. D. Panagiotopoulos, Minimax Theorem and Qualitative Properties of the Solutions of Hemivariational Inequalities,, Nonconvex Optimization and its Applications, (1999).
|
[22] |
D. Motreanu and V. Radulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems,, Kluwer Academic Publishers, (2003).
|
[23] |
P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering,, Springer, (1993).
doi: 10.1007/978-3-642-51677-1. |
[24] |
L. Scrimali, Mixed behavior network equilibria and quasi-variational inequalities,, J. Ind. Manag. Optim., 5 (2009), 363.
doi: 10.3934/jimo.2009.5.363. |
[25] |
A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight,, Studia. Math., 135 (1999), 191.
|
[26] |
R. Xiao and Y. Y. Zhou, Multiple solutions for a class of semilinear elliptic variational inclusion problems,, J. Ind. Manag. Optim., 7 (2011), 991.
doi: 10.3934/jimo.2011.7.991. |
show all references
References:
[1] |
C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.
doi: 10.3934/jimo.2007.3.519. |
[2] |
F. H. Clarke, Optimization and Nonsmooth Analysis,, John Wiley-interscience, (1983).
|
[3] |
Z. Dályay and C. Varga, An existence result for hemivariational inequalities,, Electronic J. Differential Equations, 2004 (2004), 1.
|
[4] |
K. Fan, A generalization of Tychonoff's fixed point theorem,, Math. Ann., 142 (1961), 305.
|
[5] |
F. Faraci, A. Iannizzotto, P. Kupán and C. Varga, Existence and multiplicity results for hemivariational inequalities with two parameters,, Nonlinear Anal., 67 (2007), 2654.
doi: 10.1016/j.na.2006.09.030. |
[6] |
M. Filippakis, L. Gasinski and N. S. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential,, Nonlinear Anal., 61 (2005), 61.
doi: 10.1016/j.na.2004.11.012. |
[7] |
M. Filippakis, L. Gasinski and N. S. Papageorgiou, Nontrivial solutions for resonant hemivariational inequalities,, J. Global Optim., 34 (2006), 317.
doi: 10.1007/s10898-005-4388-1. |
[8] |
L. Gasinski and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,, Chapman and Hall/CRC, (2005).
|
[9] |
F. Gazzola and V. Rădulescu, A nonsmooth critical point theory approach to some nonlinear elliptic equations in $\mathbbR^N$,, Differential Integral Equations, 13 (2000), 47.
|
[10] |
D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, Variational and Hemivariational Inequalities: Theory, Methods and Applications,, Vol. I. Unilateral analysis and unilateral mechanics. Nonconvex Optimization and its Applications, (2003).
|
[11] |
S. C. Hu and N. S. Papageorgiou, Positive solutions for nonlinear hemivariational inequalities,, J. Math. Anal. Appl., 310 (2005), 161.
doi: 10.1016/j.jmaa.2005.01.051. |
[12] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.
doi: 10.3934/jimo.2007.3.671. |
[13] |
Y. S. Huang, Positive solutions of quasilinear elliptic equations,, Topol. Meth. Nonl. Anal., 12 (1998), 91.
|
[14] |
Y. S. Huang and Y. Y. Zhou, Multiple solutions for a class of nonlinear elliptic problems with a p-Laplacian type operator,, Nonlinear Anal., 72 (2010), 3388.
doi: 10.1016/j.na.2009.12.020. |
[15] |
A. Kristály, Multiplicity results for an eigenvalue problem for hemivariational inequalities,, Set-Valued Analysis, 13 (2005), 85.
doi: 10.1007/s11228-004-6565-7. |
[16] |
A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities in strip-like domains,, J. Math. Anal. Appl., 325 (2007), 975.
doi: 10.1016/j.jmaa.2006.02.062. |
[17] |
S. J. Li and Z. M. Fang, On the stability of a dual weak vector variational inequality problem,, J. Ind. Manag. Optim., 4 (2008), 155.
doi: 10.3934/jimo.2008.4.155. |
[18] |
H. Lisei, A. E. Molnr and C. Varga, On a class of inequality problems with lack of compactness,, J. Math. Anal. Appl., 378 (2011), 741.
doi: 10.1016/j.jmaa.2010.12.041. |
[19] |
Z. H. Liu and D. Motreanu, A class of variational-hemivariational inequalities of elliptic type,, Nonlinearity, 23 (2010), 1741.
doi: 10.1088/0951-7715/23/7/012. |
[20] |
I. I. Mezei and L. Săplăcan, Existence result and applications for general variational-hemivariational inequalities on unbounded domains,, Electronic J. Differential Equations, 2009 (2009), 1.
|
[21] |
D. Motreanu and P. D. Panagiotopoulos, Minimax Theorem and Qualitative Properties of the Solutions of Hemivariational Inequalities,, Nonconvex Optimization and its Applications, (1999).
|
[22] |
D. Motreanu and V. Radulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems,, Kluwer Academic Publishers, (2003).
|
[23] |
P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering,, Springer, (1993).
doi: 10.1007/978-3-642-51677-1. |
[24] |
L. Scrimali, Mixed behavior network equilibria and quasi-variational inequalities,, J. Ind. Manag. Optim., 5 (2009), 363.
doi: 10.3934/jimo.2009.5.363. |
[25] |
A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight,, Studia. Math., 135 (1999), 191.
|
[26] |
R. Xiao and Y. Y. Zhou, Multiple solutions for a class of semilinear elliptic variational inclusion problems,, J. Ind. Manag. Optim., 7 (2011), 991.
doi: 10.3934/jimo.2011.7.991. |
[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294 |
[3] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[4] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[5] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[6] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[7] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[8] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[9] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[10] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[11] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]