• Previous Article
    Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times
  • JIMO Home
  • This Issue
  • Next Article
    A DC programming approach for sensor network localization with uncertainties in anchor positions
July  2014, 10(3): 827-837. doi: 10.3934/jimo.2014.10.827

A class of quasilinear elliptic hemivariational inequality problems on unbounded domains

1. 

Department of Mathematics, Soochow University, Suzhou 215006, China, China

2. 

Department of Mathematics, Soochow University, Suzhou, 215006

Received  May 2013 Revised  June 2013 Published  November 2013

In this paper, we are concerned with the existence of solutions of a class of quasilinear elliptic hemivariational inequalities on unbounded domains. This kind of problems is more delicate due to the lack of compact embedding of the Sobolev spaces. By using the Clarke generalized directional derivatives for locally Lipschitz functions and some nonlinear function analysis techniques, such as the Ky Fan theorem for multivalued mappings, the theorem of finite intersection property, etc, we obtain the existence of solutions of the quasilinear elliptic hemivariational inequalities. Unlike those methods used in the references mentioned in this paper, we treat the case of unbounded domain by using the approximation of bounded domains.
Citation: Lijing Xi, Yuying Zhou, Yisheng Huang. A class of quasilinear elliptic hemivariational inequality problems on unbounded domains. Journal of Industrial & Management Optimization, 2014, 10 (3) : 827-837. doi: 10.3934/jimo.2014.10.827
References:
[1]

C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis,, John Wiley-interscience, (1983).   Google Scholar

[3]

Z. Dályay and C. Varga, An existence result for hemivariational inequalities,, Electronic J. Differential Equations, 2004 (2004), 1.   Google Scholar

[4]

K. Fan, A generalization of Tychonoff's fixed point theorem,, Math. Ann., 142 (1961), 305.   Google Scholar

[5]

F. Faraci, A. Iannizzotto, P. Kupán and C. Varga, Existence and multiplicity results for hemivariational inequalities with two parameters,, Nonlinear Anal., 67 (2007), 2654.  doi: 10.1016/j.na.2006.09.030.  Google Scholar

[6]

M. Filippakis, L. Gasinski and N. S. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential,, Nonlinear Anal., 61 (2005), 61.  doi: 10.1016/j.na.2004.11.012.  Google Scholar

[7]

M. Filippakis, L. Gasinski and N. S. Papageorgiou, Nontrivial solutions for resonant hemivariational inequalities,, J. Global Optim., 34 (2006), 317.  doi: 10.1007/s10898-005-4388-1.  Google Scholar

[8]

L. Gasinski and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,, Chapman and Hall/CRC, (2005).   Google Scholar

[9]

F. Gazzola and V. Rădulescu, A nonsmooth critical point theory approach to some nonlinear elliptic equations in $\mathbbR^N$,, Differential Integral Equations, 13 (2000), 47.   Google Scholar

[10]

D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, Variational and Hemivariational Inequalities: Theory, Methods and Applications,, Vol. I. Unilateral analysis and unilateral mechanics. Nonconvex Optimization and its Applications, (2003).   Google Scholar

[11]

S. C. Hu and N. S. Papageorgiou, Positive solutions for nonlinear hemivariational inequalities,, J. Math. Anal. Appl., 310 (2005), 161.  doi: 10.1016/j.jmaa.2005.01.051.  Google Scholar

[12]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.  doi: 10.3934/jimo.2007.3.671.  Google Scholar

[13]

Y. S. Huang, Positive solutions of quasilinear elliptic equations,, Topol. Meth. Nonl. Anal., 12 (1998), 91.   Google Scholar

[14]

Y. S. Huang and Y. Y. Zhou, Multiple solutions for a class of nonlinear elliptic problems with a p-Laplacian type operator,, Nonlinear Anal., 72 (2010), 3388.  doi: 10.1016/j.na.2009.12.020.  Google Scholar

[15]

A. Kristály, Multiplicity results for an eigenvalue problem for hemivariational inequalities,, Set-Valued Analysis, 13 (2005), 85.  doi: 10.1007/s11228-004-6565-7.  Google Scholar

[16]

A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities in strip-like domains,, J. Math. Anal. Appl., 325 (2007), 975.  doi: 10.1016/j.jmaa.2006.02.062.  Google Scholar

[17]

S. J. Li and Z. M. Fang, On the stability of a dual weak vector variational inequality problem,, J. Ind. Manag. Optim., 4 (2008), 155.  doi: 10.3934/jimo.2008.4.155.  Google Scholar

[18]

H. Lisei, A. E. Molnr and C. Varga, On a class of inequality problems with lack of compactness,, J. Math. Anal. Appl., 378 (2011), 741.  doi: 10.1016/j.jmaa.2010.12.041.  Google Scholar

[19]

Z. H. Liu and D. Motreanu, A class of variational-hemivariational inequalities of elliptic type,, Nonlinearity, 23 (2010), 1741.  doi: 10.1088/0951-7715/23/7/012.  Google Scholar

[20]

I. I. Mezei and L. Săplăcan, Existence result and applications for general variational-hemivariational inequalities on unbounded domains,, Electronic J. Differential Equations, 2009 (2009), 1.   Google Scholar

[21]

D. Motreanu and P. D. Panagiotopoulos, Minimax Theorem and Qualitative Properties of the Solutions of Hemivariational Inequalities,, Nonconvex Optimization and its Applications, (1999).   Google Scholar

[22]

D. Motreanu and V. Radulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems,, Kluwer Academic Publishers, (2003).   Google Scholar

[23]

P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering,, Springer, (1993).  doi: 10.1007/978-3-642-51677-1.  Google Scholar

[24]

L. Scrimali, Mixed behavior network equilibria and quasi-variational inequalities,, J. Ind. Manag. Optim., 5 (2009), 363.  doi: 10.3934/jimo.2009.5.363.  Google Scholar

[25]

A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight,, Studia. Math., 135 (1999), 191.   Google Scholar

[26]

R. Xiao and Y. Y. Zhou, Multiple solutions for a class of semilinear elliptic variational inclusion problems,, J. Ind. Manag. Optim., 7 (2011), 991.  doi: 10.3934/jimo.2011.7.991.  Google Scholar

show all references

References:
[1]

C. R. Chen and S. J. Li, Semicontinuity of the solution set map to a set-valued weak vector variational inequality,, J. Ind. Manag. Optim., 3 (2007), 519.  doi: 10.3934/jimo.2007.3.519.  Google Scholar

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis,, John Wiley-interscience, (1983).   Google Scholar

[3]

Z. Dályay and C. Varga, An existence result for hemivariational inequalities,, Electronic J. Differential Equations, 2004 (2004), 1.   Google Scholar

[4]

K. Fan, A generalization of Tychonoff's fixed point theorem,, Math. Ann., 142 (1961), 305.   Google Scholar

[5]

F. Faraci, A. Iannizzotto, P. Kupán and C. Varga, Existence and multiplicity results for hemivariational inequalities with two parameters,, Nonlinear Anal., 67 (2007), 2654.  doi: 10.1016/j.na.2006.09.030.  Google Scholar

[6]

M. Filippakis, L. Gasinski and N. S. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential,, Nonlinear Anal., 61 (2005), 61.  doi: 10.1016/j.na.2004.11.012.  Google Scholar

[7]

M. Filippakis, L. Gasinski and N. S. Papageorgiou, Nontrivial solutions for resonant hemivariational inequalities,, J. Global Optim., 34 (2006), 317.  doi: 10.1007/s10898-005-4388-1.  Google Scholar

[8]

L. Gasinski and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,, Chapman and Hall/CRC, (2005).   Google Scholar

[9]

F. Gazzola and V. Rădulescu, A nonsmooth critical point theory approach to some nonlinear elliptic equations in $\mathbbR^N$,, Differential Integral Equations, 13 (2000), 47.   Google Scholar

[10]

D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, Variational and Hemivariational Inequalities: Theory, Methods and Applications,, Vol. I. Unilateral analysis and unilateral mechanics. Nonconvex Optimization and its Applications, (2003).   Google Scholar

[11]

S. C. Hu and N. S. Papageorgiou, Positive solutions for nonlinear hemivariational inequalities,, J. Math. Anal. Appl., 310 (2005), 161.  doi: 10.1016/j.jmaa.2005.01.051.  Google Scholar

[12]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671.  doi: 10.3934/jimo.2007.3.671.  Google Scholar

[13]

Y. S. Huang, Positive solutions of quasilinear elliptic equations,, Topol. Meth. Nonl. Anal., 12 (1998), 91.   Google Scholar

[14]

Y. S. Huang and Y. Y. Zhou, Multiple solutions for a class of nonlinear elliptic problems with a p-Laplacian type operator,, Nonlinear Anal., 72 (2010), 3388.  doi: 10.1016/j.na.2009.12.020.  Google Scholar

[15]

A. Kristály, Multiplicity results for an eigenvalue problem for hemivariational inequalities,, Set-Valued Analysis, 13 (2005), 85.  doi: 10.1007/s11228-004-6565-7.  Google Scholar

[16]

A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities in strip-like domains,, J. Math. Anal. Appl., 325 (2007), 975.  doi: 10.1016/j.jmaa.2006.02.062.  Google Scholar

[17]

S. J. Li and Z. M. Fang, On the stability of a dual weak vector variational inequality problem,, J. Ind. Manag. Optim., 4 (2008), 155.  doi: 10.3934/jimo.2008.4.155.  Google Scholar

[18]

H. Lisei, A. E. Molnr and C. Varga, On a class of inequality problems with lack of compactness,, J. Math. Anal. Appl., 378 (2011), 741.  doi: 10.1016/j.jmaa.2010.12.041.  Google Scholar

[19]

Z. H. Liu and D. Motreanu, A class of variational-hemivariational inequalities of elliptic type,, Nonlinearity, 23 (2010), 1741.  doi: 10.1088/0951-7715/23/7/012.  Google Scholar

[20]

I. I. Mezei and L. Săplăcan, Existence result and applications for general variational-hemivariational inequalities on unbounded domains,, Electronic J. Differential Equations, 2009 (2009), 1.   Google Scholar

[21]

D. Motreanu and P. D. Panagiotopoulos, Minimax Theorem and Qualitative Properties of the Solutions of Hemivariational Inequalities,, Nonconvex Optimization and its Applications, (1999).   Google Scholar

[22]

D. Motreanu and V. Radulescu, Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems,, Kluwer Academic Publishers, (2003).   Google Scholar

[23]

P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering,, Springer, (1993).  doi: 10.1007/978-3-642-51677-1.  Google Scholar

[24]

L. Scrimali, Mixed behavior network equilibria and quasi-variational inequalities,, J. Ind. Manag. Optim., 5 (2009), 363.  doi: 10.3934/jimo.2009.5.363.  Google Scholar

[25]

A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight,, Studia. Math., 135 (1999), 191.   Google Scholar

[26]

R. Xiao and Y. Y. Zhou, Multiple solutions for a class of semilinear elliptic variational inclusion problems,, J. Ind. Manag. Optim., 7 (2011), 991.  doi: 10.3934/jimo.2011.7.991.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[5]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[6]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[8]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[9]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[10]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[11]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]