July  2014, 10(3): 839-857. doi: 10.3934/jimo.2014.10.839

Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times

1. 

Department of Applied Mathematics, Andhra University, Visakhapatnam - 530 003, India, India

Received  June 2012 Revised  June 2013 Published  November 2013

This paper analyzes a renewal input multiple working vacations queue with change over times under $(a,c,b)$ policy. The service and vacation times are exponentially distributed. The server begins service if there are at least $c$ units in the queue and the service takes place in batches with a minimum of size $a$ and a maximum of size $b~ (a\leq c \leq b)$. The steady state queue length distributions at arbitrary and pre-arrival epochs are obtained along with some special cases of the model. Performance measures and optimal cost policy is presented with numerical experiences for some particular values of the parameters. The genetic algorithm is employed to search the optimal values of some important parameters of the system.
Citation: Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial & Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839
References:
[1]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Operations Research Letters, 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[2]

C. Baburaj, A discrete time $(a, c, d)$ policy bulk service queue,, International Journal of Information and Management Sciences, 21 (2010), 469.   Google Scholar

[3]

C. Baburaj and T. M. Surendranath, An M/M/1 bulk service queue under the policy $(a, c, d)$,, International Journal of Agricultural and Statistical Sciences, 1 (2005), 27.   Google Scholar

[4]

A. Banik, U. C. Gupta and S. Pathak, On the GI/M/1/N queue with multiple working vacations - Analytic analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[5]

G. D. Fatta, F. Hoffmann, G. L. Re and A. Urso, A genetic algorithm for the design of a fuzzy controller for active queue management,, IEEE Transactions on Systems, 33 (2003), 313.   Google Scholar

[6]

B. T. Doshi, Queueing systems with vacations: A survey,, Queueing Systems Theory Appl., 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[7]

V. Goswami and G. B. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations,, Computers $&$ Industrial Engineering, 61 (2011), 629.  doi: 10.1016/j.cie.2011.04.018.  Google Scholar

[8]

R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms,, 2nd edition, (2004).   Google Scholar

[9]

J. H. Holland, Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,, The University of Michigan Press, (1975).   Google Scholar

[10]

H.-I. Huang, P.-C. Hsu and J.-C. Ke, Controlling arrival and service of a two-removable-server system using genetic algorithm,, Expert Systems with Applications, 38 (2011), 10054.  doi: 10.1016/j.eswa.2011.02.011.  Google Scholar

[11]

M. Jain and P. Singh, State dependent bulk service queue with delayed vacations,, JKAU Engineering Sciences, 16 (2005), 3.  doi: 10.4197/Eng.16-1.1.  Google Scholar

[12]

J.-C. Ke, C.-H. Wu and Z. G. Zhang, Recent developments in vacation queueing Models: A short survey,, International Journal of Operations Research, 7 (2010), 3.   Google Scholar

[13]

P. V. Laxmi, V. Goswami and D. Seleshi, Renewal input (a,c,b) policy queue with multiple vacations and change over times,, International Journal of Mathematics in Operational Research, 5 (2013), 466.   Google Scholar

[14]

H. W. Lee, D. I. Jung and S. S. Lee, Decompositions of Batch Service Queue with Server Vacations: Markovian Case,, Research Report, (1994).   Google Scholar

[15]

J.-H. Li, N.-S. Tian and W.-Y. Liu, Discrete time GI/Geo/1 queue with multiple working vacations,, Queueing Systems, 56 (2007), 53.  doi: 10.1007/s11134-007-9030-0.  Google Scholar

[16]

C.-H. Lin and J.-C. Ke, Genetic algorithm for optimal thresholds of an infinite capacity multi-server system with triadic policy,, Expert Systems with Applications, 37 (2010), 4276.   Google Scholar

[17]

C.-H. Lin and J.-C. Ke, Optimization analysis for an infinite capacity queueing system with multiple queue-dependent servers: Genetic algorithm,, International Journal of Computer Mathematics, 88 (2011), 1430.  doi: 10.1080/00207160.2010.509791.  Google Scholar

[18]

S. S. Rao, Engineering Optimization: Theory and Practice,, 4th edition, (2009).   Google Scholar

[19]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41.   Google Scholar

[20]

L. Tadj and C. Abid, Optimal management policy for a single and bulk service queue,, International Journal of Advanced Operations Management, 3 (2011), 175.   Google Scholar

[21]

L. Tadj and G. Choudhury, Optimal design and control of queues,, Top, 13 (2005), 359.  doi: 10.1007/BF02579061.  Google Scholar

[22]

L. Tadj, G. Choudhury and C. Tadj, A bulk quorum queueing system with a random setup time under $N$- policy and with Bernoulli vacation schedule,, Stochastics: An International Journal of Probability and Stochastic Processes, 78 (2006), 1.  doi: 10.1080/17442500500397574.  Google Scholar

[23]

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation. Vol. 1. Vacation and Priority Systems. Part 1,, North Holland, (1991).   Google Scholar

[24]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, International Series in Operations Research & Management Science, (2006).   Google Scholar

show all references

References:
[1]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Operations Research Letters, 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[2]

C. Baburaj, A discrete time $(a, c, d)$ policy bulk service queue,, International Journal of Information and Management Sciences, 21 (2010), 469.   Google Scholar

[3]

C. Baburaj and T. M. Surendranath, An M/M/1 bulk service queue under the policy $(a, c, d)$,, International Journal of Agricultural and Statistical Sciences, 1 (2005), 27.   Google Scholar

[4]

A. Banik, U. C. Gupta and S. Pathak, On the GI/M/1/N queue with multiple working vacations - Analytic analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[5]

G. D. Fatta, F. Hoffmann, G. L. Re and A. Urso, A genetic algorithm for the design of a fuzzy controller for active queue management,, IEEE Transactions on Systems, 33 (2003), 313.   Google Scholar

[6]

B. T. Doshi, Queueing systems with vacations: A survey,, Queueing Systems Theory Appl., 1 (1986), 29.  doi: 10.1007/BF01149327.  Google Scholar

[7]

V. Goswami and G. B. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations,, Computers $&$ Industrial Engineering, 61 (2011), 629.  doi: 10.1016/j.cie.2011.04.018.  Google Scholar

[8]

R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms,, 2nd edition, (2004).   Google Scholar

[9]

J. H. Holland, Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,, The University of Michigan Press, (1975).   Google Scholar

[10]

H.-I. Huang, P.-C. Hsu and J.-C. Ke, Controlling arrival and service of a two-removable-server system using genetic algorithm,, Expert Systems with Applications, 38 (2011), 10054.  doi: 10.1016/j.eswa.2011.02.011.  Google Scholar

[11]

M. Jain and P. Singh, State dependent bulk service queue with delayed vacations,, JKAU Engineering Sciences, 16 (2005), 3.  doi: 10.4197/Eng.16-1.1.  Google Scholar

[12]

J.-C. Ke, C.-H. Wu and Z. G. Zhang, Recent developments in vacation queueing Models: A short survey,, International Journal of Operations Research, 7 (2010), 3.   Google Scholar

[13]

P. V. Laxmi, V. Goswami and D. Seleshi, Renewal input (a,c,b) policy queue with multiple vacations and change over times,, International Journal of Mathematics in Operational Research, 5 (2013), 466.   Google Scholar

[14]

H. W. Lee, D. I. Jung and S. S. Lee, Decompositions of Batch Service Queue with Server Vacations: Markovian Case,, Research Report, (1994).   Google Scholar

[15]

J.-H. Li, N.-S. Tian and W.-Y. Liu, Discrete time GI/Geo/1 queue with multiple working vacations,, Queueing Systems, 56 (2007), 53.  doi: 10.1007/s11134-007-9030-0.  Google Scholar

[16]

C.-H. Lin and J.-C. Ke, Genetic algorithm for optimal thresholds of an infinite capacity multi-server system with triadic policy,, Expert Systems with Applications, 37 (2010), 4276.   Google Scholar

[17]

C.-H. Lin and J.-C. Ke, Optimization analysis for an infinite capacity queueing system with multiple queue-dependent servers: Genetic algorithm,, International Journal of Computer Mathematics, 88 (2011), 1430.  doi: 10.1080/00207160.2010.509791.  Google Scholar

[18]

S. S. Rao, Engineering Optimization: Theory and Practice,, 4th edition, (2009).   Google Scholar

[19]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41.   Google Scholar

[20]

L. Tadj and C. Abid, Optimal management policy for a single and bulk service queue,, International Journal of Advanced Operations Management, 3 (2011), 175.   Google Scholar

[21]

L. Tadj and G. Choudhury, Optimal design and control of queues,, Top, 13 (2005), 359.  doi: 10.1007/BF02579061.  Google Scholar

[22]

L. Tadj, G. Choudhury and C. Tadj, A bulk quorum queueing system with a random setup time under $N$- policy and with Bernoulli vacation schedule,, Stochastics: An International Journal of Probability and Stochastic Processes, 78 (2006), 1.  doi: 10.1080/17442500500397574.  Google Scholar

[23]

H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation. Vol. 1. Vacation and Priority Systems. Part 1,, North Holland, (1991).   Google Scholar

[24]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, International Series in Operations Research & Management Science, (2006).   Google Scholar

[1]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[2]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[3]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[4]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[5]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[6]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[7]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[8]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]