Citation: |
[1] |
A. G. Aghdam, E. J. Davison and R. Becerril-Arreola, Structural modification of systems using discretization and generalized sampled-data hold functions, Automatica, 42 (2006), 1935-1941.doi: 10.1016/j.automatica.2006.06.005. |
[2] |
M. Aldeen and J. F. Marsh, Decentralized observer-based control scheme for interconnected dynamical systems with unknown inputs, IEEE Proc. Control Theory Appl., 146 (1999), 349-357. |
[3] |
Z. Artstein, Linear systems with delayed controls: A reduction, IEEE Transactions on Automatic Control, 27 (1982), 869-879.doi: 10.1109/TAC.1982.1103023. |
[4] |
Y.-Y. Cao and J. Lam, A computational method for simultaneous LQ optimal control design via piecewise constant output feedback, IEEE Transaction on Systems, MAN, and Cybernetics-Part B: Cybernetics, 31 (2001), 836-842. |
[5] |
Z.-F. Dai, Two modified HS type conjugate gradient methods for unconstrained optimization problems, Nonlinear Analysis, 74 (2011), 927-936.doi: 10.1016/j.na.2010.09.046. |
[6] |
Z. Gong, Decentralized robust control of uncertain interconnected systems with prescribed degree of exponential convergence, IEEE Transaction on Automatic Control, 40 (1995), 704-707.doi: 10.1109/9.376105. |
[7] |
W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific Journal of Optimization, 2 (2006), 35-58. |
[8] |
M. Ikeda, Decentralized control of large scale systems, in Three Decades of Mathematical System Theory, Lecture Notes in Control and Inform. Sci., 135, Springer, Berlin, 1989, 219-242.doi: 10.1007/BFb0008464. |
[9] |
M. S. Mahmoud, M. F. Hassan and S. J. Saleh, Decentralized structures for a stream water quality control problems, Optimal Control Applications & Methods, 6 (1985), 167-168.doi: 10.1002/oca.4660060209. |
[10] |
D. Jiang and J. B. Moore, A gradient flow approach to decentralized output feedback optimal control, Systems & Control Letters, 27 (1996), 223-231.doi: 10.1016/0167-6911(96)80519-6. |
[11] |
K. H. Lee, J. H. Lee and W. H. Kwon, Sufficient LMI conditions for $H_\infty$ output feedback stabilization of linear discrete-time systems, IEEE Transactions on Automatic Control, 51 (2006), 675-680.doi: 10.1109/TAC.2006.872766. |
[12] |
F. Leibfritz, COMPlib: COnstraint Matrix-Optimization Problem library-A Collection of Test Examples for Nonlinear Semi-Definite Programs, Control System Design and Related Problems, Technical Report, 2004. Available from: http://www.complib.de. |
[13] |
T. Liu, Z.-P. Jiang and D. J. Hill, Decentralized output-feedback control of large-scale nonlinear systems with sensor noise, Automatica J. IFAC, 48 (2012), 2560-2568.doi: 10.1016/j.automatica.2012.06.054. |
[14] |
W. Q. Liu and V. Sreeram, New algorithm for computing LQ suboptimal output feedback gains of decentralized control systems, Journal of Optimization Theory and Applications, 93 (1997), 597-607.doi: 10.1023/A:1022647230641. |
[15] |
P. M. Mäkilä and H. T. Toivonen, Computational methods for parametric LQ problems-a survey, IEEE Transactions on Automatic Control, 32 (1987), 658-671.doi: 10.1109/TAC.1987.1104686. |
[16] |
E. M. E. Mostafa, A trust region method for solving the decentralized static output feedback design problem, Journal of Applied Mathematics & Computing, 18 (2005), 1-23.doi: 10.1007/BF02936553. |
[17] |
E. M. E. Mostafa, Computational design of optimal discrete-time output feedback controllers, Journal of the Operations Research Society of Japan, 51 (2008), 15-28. |
[18] |
E. M. E. Mostafa, On the computation of optimal static output feedback controllers for discrete-time systems, Numerical Functional Analysis and Optimization, 33 (2012), 591-610.doi: 10.1080/01630563.2012.661381. |
[19] |
E. M. E. Mostafa, A conjugate gradient method for discrete-time output feedback control design, Journal of Computational Mathematics, 30 (2012), 279-297.doi: 10.4208/jcm.1109-m3364. |
[20] |
E. M. E. Mostafa, Nonlinear conjugate gradient method for continuous time output feedback design, Journal of Applied Mathematics and Computing, 40 (2012), 529-549.doi: 10.1007/s12190-012-0574-8. |
[21] |
W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization, Journal of Industrial and Management Optimization, 9 (2013), 595-619.doi: 10.3934/jimo.2013.9.595. |
[22] |
P. R. Pagilla and Y. Zhu, A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems, ASME J. Dynam. Syst. Meas. Control, 127 (2004), 167-172.doi: 10.1115/1.1870047. |
[23] |
T. Rautert and E. W. Sachs, Computational design of optimal output feedback controllers, SIAM Journal on Optimization, 7 (1997), 837-852.doi: 10.1137/S1052623495290441. |
[24] |
M. Saif and Y. Guan, Decentralized state estimation in large-scale interconnected dynamical systems, Automatica J. IFAC, 28 (1992), 215-219.doi: 10.1016/0005-1098(92)90024-A. |
[25] |
D. D. Šiljak, Decentralized Control of Complex Systems, Mathematics in Science and Engineering, 184, Academic Press, Inc., Boston, MA, 1991. |
[26] |
D.D. Šiljak and D. M. Stipanović, Robust stabilization of nonlinear systems: The LMI approach, Math. Problems Eng., 6 (2000), 461-493.doi: 10.1155/S1024123X00001435. |
[27] |
V. L. Syrmos, C. T. Abdallah, P. Dorato and K. Grigoriadis, Static output feedback-a survey, Automatica J. IFAC, 33 (1997), 125-137.doi: 10.1016/S0005-1098(96)00141-0. |
[28] |
S. Tong, Y. Li and T. Wang, Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems using DSC technique, International Journal of Robust and Nonlinear Control, 23 (2013), 381-399.doi: 10.1002/rnc.1834. |
[29] |
R. J. Veilette, J. V. Medanić and W. R. Perkins, Design of reliable control systems, IEEE Transaction on Automatic Control, 37 (1992), 290-304.doi: 10.1109/9.119629. |
[30] |
Z. Wei G. Li and L. Qi, New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems, Applied Mathematics and Computation, 179 (2006), 407-430.doi: 10.1016/j.amc.2005.11.150. |
[31] |
G. Yu, L. Guan and Z. Wei, Globally convergent Polak-Ribière-Polyak conjugate gradient methods under a modified Wolfe line search, Applied Mathematics and Computation, 215 (2009), 3082-3090.doi: 10.1016/j.amc.2009.09.063. |
[32] |
G. Zhai, M. Ikeda and Y. Fujisaki, Decentralized Hinf controller design: A matrix inequality approach using a homotopy method, Automatica J. IFAC, 37 (2001), 565-572.doi: 10.1016/S0005-1098(00)00190-4. |
[33] |
L. Zhang, W. Zhou and D. Li, Some descent three-term conjugate gradient methods and their global convergence, Optimization Methods and Software, 22 (2007), 697-711.doi: 10.1080/10556780701223293. |