-
Previous Article
A hybrid approach for index tracking with practical constraints
- JIMO Home
- This Issue
-
Next Article
Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems
A nonlinear conjugate gradient method for a special class of matrix optimization problems
1. | Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Moharam Bey 21511, Alexandria, Egypt |
References:
[1] |
A. G. Aghdam, E. J. Davison and R. Becerril-Arreola, Structural modification of systems using discretization and generalized sampled-data hold functions,, Automatica, 42 (2006), 1935.
doi: 10.1016/j.automatica.2006.06.005. |
[2] |
M. Aldeen and J. F. Marsh, Decentralized observer-based control scheme for interconnected dynamical systems with unknown inputs,, IEEE Proc. Control Theory Appl., 146 (1999), 349. Google Scholar |
[3] |
Z. Artstein, Linear systems with delayed controls: A reduction,, IEEE Transactions on Automatic Control, 27 (1982), 869.
doi: 10.1109/TAC.1982.1103023. |
[4] |
Y.-Y. Cao and J. Lam, A computational method for simultaneous LQ optimal control design via piecewise constant output feedback,, IEEE Transaction on Systems, 31 (2001), 836. Google Scholar |
[5] |
Z.-F. Dai, Two modified HS type conjugate gradient methods for unconstrained optimization problems,, Nonlinear Analysis, 74 (2011), 927.
doi: 10.1016/j.na.2010.09.046. |
[6] |
Z. Gong, Decentralized robust control of uncertain interconnected systems with prescribed degree of exponential convergence,, IEEE Transaction on Automatic Control, 40 (1995), 704.
doi: 10.1109/9.376105. |
[7] |
W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods,, Pacific Journal of Optimization, 2 (2006), 35.
|
[8] |
M. Ikeda, Decentralized control of large scale systems,, in Three Decades of Mathematical System Theory, (1989), 219.
doi: 10.1007/BFb0008464. |
[9] |
M. S. Mahmoud, M. F. Hassan and S. J. Saleh, Decentralized structures for a stream water quality control problems,, Optimal Control Applications & Methods, 6 (1985), 167.
doi: 10.1002/oca.4660060209. |
[10] |
D. Jiang and J. B. Moore, A gradient flow approach to decentralized output feedback optimal control,, Systems & Control Letters, 27 (1996), 223.
doi: 10.1016/0167-6911(96)80519-6. |
[11] |
K. H. Lee, J. H. Lee and W. H. Kwon, Sufficient LMI conditions for $H_\infty$ output feedback stabilization of linear discrete-time systems,, IEEE Transactions on Automatic Control, 51 (2006), 675.
doi: 10.1109/TAC.2006.872766. |
[12] |
F. Leibfritz, COMPlib: COnstraint Matrix-Optimization Problem library-A Collection of Test Examples for Nonlinear Semi-Definite Programs, Control System Design and Related Problems,, Technical Report, (2004). Google Scholar |
[13] |
T. Liu, Z.-P. Jiang and D. J. Hill, Decentralized output-feedback control of large-scale nonlinear systems with sensor noise,, Automatica J. IFAC, 48 (2012), 2560.
doi: 10.1016/j.automatica.2012.06.054. |
[14] |
W. Q. Liu and V. Sreeram, New algorithm for computing LQ suboptimal output feedback gains of decentralized control systems,, Journal of Optimization Theory and Applications, 93 (1997), 597.
doi: 10.1023/A:1022647230641. |
[15] |
P. M. Mäkilä and H. T. Toivonen, Computational methods for parametric LQ problems-a survey,, IEEE Transactions on Automatic Control, 32 (1987), 658.
doi: 10.1109/TAC.1987.1104686. |
[16] |
E. M. E. Mostafa, A trust region method for solving the decentralized static output feedback design problem,, Journal of Applied Mathematics & Computing, 18 (2005), 1.
doi: 10.1007/BF02936553. |
[17] |
E. M. E. Mostafa, Computational design of optimal discrete-time output feedback controllers,, Journal of the Operations Research Society of Japan, 51 (2008), 15.
|
[18] |
E. M. E. Mostafa, On the computation of optimal static output feedback controllers for discrete-time systems,, Numerical Functional Analysis and Optimization, 33 (2012), 591.
doi: 10.1080/01630563.2012.661381. |
[19] |
E. M. E. Mostafa, A conjugate gradient method for discrete-time output feedback control design,, Journal of Computational Mathematics, 30 (2012), 279.
doi: 10.4208/jcm.1109-m3364. |
[20] |
E. M. E. Mostafa, Nonlinear conjugate gradient method for continuous time output feedback design,, Journal of Applied Mathematics and Computing, 40 (2012), 529.
doi: 10.1007/s12190-012-0574-8. |
[21] |
W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 595.
doi: 10.3934/jimo.2013.9.595. |
[22] |
P. R. Pagilla and Y. Zhu, A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems,, ASME J. Dynam. Syst. Meas. Control, 127 (2004), 167.
doi: 10.1115/1.1870047. |
[23] |
T. Rautert and E. W. Sachs, Computational design of optimal output feedback controllers,, SIAM Journal on Optimization, 7 (1997), 837.
doi: 10.1137/S1052623495290441. |
[24] |
M. Saif and Y. Guan, Decentralized state estimation in large-scale interconnected dynamical systems,, Automatica J. IFAC, 28 (1992), 215.
doi: 10.1016/0005-1098(92)90024-A. |
[25] |
D. D. Šiljak, Decentralized Control of Complex Systems,, Mathematics in Science and Engineering, (1991).
|
[26] |
D.D. Šiljak and D. M. Stipanović, Robust stabilization of nonlinear systems: The LMI approach,, Math. Problems Eng., 6 (2000), 461.
doi: 10.1155/S1024123X00001435. |
[27] |
V. L. Syrmos, C. T. Abdallah, P. Dorato and K. Grigoriadis, Static output feedback-a survey,, Automatica J. IFAC, 33 (1997), 125.
doi: 10.1016/S0005-1098(96)00141-0. |
[28] |
S. Tong, Y. Li and T. Wang, Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems using DSC technique,, International Journal of Robust and Nonlinear Control, 23 (2013), 381.
doi: 10.1002/rnc.1834. |
[29] |
R. J. Veilette, J. V. Medanić and W. R. Perkins, Design of reliable control systems,, IEEE Transaction on Automatic Control, 37 (1992), 290.
doi: 10.1109/9.119629. |
[30] |
Z. Wei G. Li and L. Qi, New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems,, Applied Mathematics and Computation, 179 (2006), 407.
doi: 10.1016/j.amc.2005.11.150. |
[31] |
G. Yu, L. Guan and Z. Wei, Globally convergent Polak-Ribière-Polyak conjugate gradient methods under a modified Wolfe line search,, Applied Mathematics and Computation, 215 (2009), 3082.
doi: 10.1016/j.amc.2009.09.063. |
[32] |
G. Zhai, M. Ikeda and Y. Fujisaki, Decentralized Hinf controller design: A matrix inequality approach using a homotopy method,, Automatica J. IFAC, 37 (2001), 565.
doi: 10.1016/S0005-1098(00)00190-4. |
[33] |
L. Zhang, W. Zhou and D. Li, Some descent three-term conjugate gradient methods and their global convergence,, Optimization Methods and Software, 22 (2007), 697.
doi: 10.1080/10556780701223293. |
show all references
References:
[1] |
A. G. Aghdam, E. J. Davison and R. Becerril-Arreola, Structural modification of systems using discretization and generalized sampled-data hold functions,, Automatica, 42 (2006), 1935.
doi: 10.1016/j.automatica.2006.06.005. |
[2] |
M. Aldeen and J. F. Marsh, Decentralized observer-based control scheme for interconnected dynamical systems with unknown inputs,, IEEE Proc. Control Theory Appl., 146 (1999), 349. Google Scholar |
[3] |
Z. Artstein, Linear systems with delayed controls: A reduction,, IEEE Transactions on Automatic Control, 27 (1982), 869.
doi: 10.1109/TAC.1982.1103023. |
[4] |
Y.-Y. Cao and J. Lam, A computational method for simultaneous LQ optimal control design via piecewise constant output feedback,, IEEE Transaction on Systems, 31 (2001), 836. Google Scholar |
[5] |
Z.-F. Dai, Two modified HS type conjugate gradient methods for unconstrained optimization problems,, Nonlinear Analysis, 74 (2011), 927.
doi: 10.1016/j.na.2010.09.046. |
[6] |
Z. Gong, Decentralized robust control of uncertain interconnected systems with prescribed degree of exponential convergence,, IEEE Transaction on Automatic Control, 40 (1995), 704.
doi: 10.1109/9.376105. |
[7] |
W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods,, Pacific Journal of Optimization, 2 (2006), 35.
|
[8] |
M. Ikeda, Decentralized control of large scale systems,, in Three Decades of Mathematical System Theory, (1989), 219.
doi: 10.1007/BFb0008464. |
[9] |
M. S. Mahmoud, M. F. Hassan and S. J. Saleh, Decentralized structures for a stream water quality control problems,, Optimal Control Applications & Methods, 6 (1985), 167.
doi: 10.1002/oca.4660060209. |
[10] |
D. Jiang and J. B. Moore, A gradient flow approach to decentralized output feedback optimal control,, Systems & Control Letters, 27 (1996), 223.
doi: 10.1016/0167-6911(96)80519-6. |
[11] |
K. H. Lee, J. H. Lee and W. H. Kwon, Sufficient LMI conditions for $H_\infty$ output feedback stabilization of linear discrete-time systems,, IEEE Transactions on Automatic Control, 51 (2006), 675.
doi: 10.1109/TAC.2006.872766. |
[12] |
F. Leibfritz, COMPlib: COnstraint Matrix-Optimization Problem library-A Collection of Test Examples for Nonlinear Semi-Definite Programs, Control System Design and Related Problems,, Technical Report, (2004). Google Scholar |
[13] |
T. Liu, Z.-P. Jiang and D. J. Hill, Decentralized output-feedback control of large-scale nonlinear systems with sensor noise,, Automatica J. IFAC, 48 (2012), 2560.
doi: 10.1016/j.automatica.2012.06.054. |
[14] |
W. Q. Liu and V. Sreeram, New algorithm for computing LQ suboptimal output feedback gains of decentralized control systems,, Journal of Optimization Theory and Applications, 93 (1997), 597.
doi: 10.1023/A:1022647230641. |
[15] |
P. M. Mäkilä and H. T. Toivonen, Computational methods for parametric LQ problems-a survey,, IEEE Transactions on Automatic Control, 32 (1987), 658.
doi: 10.1109/TAC.1987.1104686. |
[16] |
E. M. E. Mostafa, A trust region method for solving the decentralized static output feedback design problem,, Journal of Applied Mathematics & Computing, 18 (2005), 1.
doi: 10.1007/BF02936553. |
[17] |
E. M. E. Mostafa, Computational design of optimal discrete-time output feedback controllers,, Journal of the Operations Research Society of Japan, 51 (2008), 15.
|
[18] |
E. M. E. Mostafa, On the computation of optimal static output feedback controllers for discrete-time systems,, Numerical Functional Analysis and Optimization, 33 (2012), 591.
doi: 10.1080/01630563.2012.661381. |
[19] |
E. M. E. Mostafa, A conjugate gradient method for discrete-time output feedback control design,, Journal of Computational Mathematics, 30 (2012), 279.
doi: 10.4208/jcm.1109-m3364. |
[20] |
E. M. E. Mostafa, Nonlinear conjugate gradient method for continuous time output feedback design,, Journal of Applied Mathematics and Computing, 40 (2012), 529.
doi: 10.1007/s12190-012-0574-8. |
[21] |
W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization,, Journal of Industrial and Management Optimization, 9 (2013), 595.
doi: 10.3934/jimo.2013.9.595. |
[22] |
P. R. Pagilla and Y. Zhu, A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems,, ASME J. Dynam. Syst. Meas. Control, 127 (2004), 167.
doi: 10.1115/1.1870047. |
[23] |
T. Rautert and E. W. Sachs, Computational design of optimal output feedback controllers,, SIAM Journal on Optimization, 7 (1997), 837.
doi: 10.1137/S1052623495290441. |
[24] |
M. Saif and Y. Guan, Decentralized state estimation in large-scale interconnected dynamical systems,, Automatica J. IFAC, 28 (1992), 215.
doi: 10.1016/0005-1098(92)90024-A. |
[25] |
D. D. Šiljak, Decentralized Control of Complex Systems,, Mathematics in Science and Engineering, (1991).
|
[26] |
D.D. Šiljak and D. M. Stipanović, Robust stabilization of nonlinear systems: The LMI approach,, Math. Problems Eng., 6 (2000), 461.
doi: 10.1155/S1024123X00001435. |
[27] |
V. L. Syrmos, C. T. Abdallah, P. Dorato and K. Grigoriadis, Static output feedback-a survey,, Automatica J. IFAC, 33 (1997), 125.
doi: 10.1016/S0005-1098(96)00141-0. |
[28] |
S. Tong, Y. Li and T. Wang, Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems using DSC technique,, International Journal of Robust and Nonlinear Control, 23 (2013), 381.
doi: 10.1002/rnc.1834. |
[29] |
R. J. Veilette, J. V. Medanić and W. R. Perkins, Design of reliable control systems,, IEEE Transaction on Automatic Control, 37 (1992), 290.
doi: 10.1109/9.119629. |
[30] |
Z. Wei G. Li and L. Qi, New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems,, Applied Mathematics and Computation, 179 (2006), 407.
doi: 10.1016/j.amc.2005.11.150. |
[31] |
G. Yu, L. Guan and Z. Wei, Globally convergent Polak-Ribière-Polyak conjugate gradient methods under a modified Wolfe line search,, Applied Mathematics and Computation, 215 (2009), 3082.
doi: 10.1016/j.amc.2009.09.063. |
[32] |
G. Zhai, M. Ikeda and Y. Fujisaki, Decentralized Hinf controller design: A matrix inequality approach using a homotopy method,, Automatica J. IFAC, 37 (2001), 565.
doi: 10.1016/S0005-1098(00)00190-4. |
[33] |
L. Zhang, W. Zhou and D. Li, Some descent three-term conjugate gradient methods and their global convergence,, Optimization Methods and Software, 22 (2007), 697.
doi: 10.1080/10556780701223293. |
[1] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[2] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[3] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[4] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[5] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[6] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[7] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[8] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[9] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[10] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[11] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[12] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[13] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[14] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[15] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[16] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[17] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[18] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[19] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[20] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]