• Previous Article
    Performance analysis of large-scale parallel-distributed processing with backup tasks for cloud computing
  • JIMO Home
  • This Issue
  • Next Article
    The FIFO single-server queue with disasters and multiple Markovian arrival streams
January  2014, 10(1): 89-112. doi: 10.3934/jimo.2014.10.89

Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy

1. 

Department of Statistics, College of Sciences, Yanshan University, Qinhuangdao 066004

2. 

Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, Kobe 658-8501

3. 

Department of Telecommunications, Budapest University of Technology and Economics, Budapest

4. 

College of Science, Yanshan University, Qinhuangdao 066004, China

Received  September 2012 Revised  June 2013 Published  October 2013

In this paper, we consider an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy, where we examine the case that customer impatience is due to the servers' vacation. Whenever a system becomes empty, the server takes a vacation. However, the server is allowed to take a maximum number $K$ of vacations if the system remains empty after the end of a vacation. This vacation policy includes both a single vacation and multiple vacations as special cases. We derive the probability generating functions of the steady-state probabilities and obtain the closed-form expressions of the system sizes when the server is in different states. We further make comparisons between the mean system sizes under the variant vacation policy and the mean system sizes under the single vacation policy or the multiple vacation policy. In addition, we obtain the closed-form expressions for other important performance measures and discuss their monotonicity with respect $K$. Finally, we present some numerical results to show the effects of some parameters on some performance measures.
Citation: Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89
References:
[1]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[2]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1007/978-1-4020-8741-7_57.  Google Scholar

[3]

A. D. Banik, The infinite-buffer single server queue with a variant of multiple vacation policy and batch Markovian arrival process,, Applied Mathematical Modelling, 33 (2009), 3025.  doi: 10.1016/j.apm.2008.10.021.  Google Scholar

[4]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[5]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342.   Google Scholar

[6]

B. Doshi, Single server queues with vacation: A survey,, Queueing Systems, 1 (1986), 29.   Google Scholar

[7]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreilable queue,, European Journal of Operational Research, 203 (2010), 143.   Google Scholar

[8]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutotial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[9]

J. C. Ke, Operating characteristic analysis on the $M^{[X]}$/G/1 system with a variant vacation policy and balking,, Applied Mathematical Modelling, 31 (2007), 1321.  doi: 10.1016/j.apm.2006.02.012.  Google Scholar

[10]

J. C. Ke and F. M. Chang, Modified vacation policy for M/G/1 retrial queue with balking and feedback,, Computer & Industrial Engineering, 57 (2009), 433.  doi: 10.1016/j.cie.2009.01.002.  Google Scholar

[11]

J. C. Ke, H. I. Huang and Y. K. Chu, Batch arrival queue with N-policy and at most J vacations,, Applied Mathematical Modelling, 34 (2010), 451.  doi: 10.1016/j.apm.2009.06.003.  Google Scholar

[12]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247.  doi: 10.1016/j.ejor.2009.02.024.  Google Scholar

[13]

H. Takagi, "Queueing Analysis, A Foundation of Performance Evaluation, Volume 1: Vacation and Priority Systems,", Part 1. North-Holland Publishing Co., (1991).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", New York: Springer, (2006).   Google Scholar

[15]

T. Y. Wang, J. C. Ke and F. M. Chang, On the discrete-time Geo/G/1 queue with randomized vacations and at most $J$ vacations,, Applied Mathematical Modelling, 35 (2011), 2297.  doi: 10.1016/j.apm.2010.11.021.  Google Scholar

[16]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[17]

D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with and working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895.  doi: 10.3934/jimo.2012.8.895.  Google Scholar

[18]

Z. G. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations,, Queueing Systems, 38 (2001), 419.  doi: 10.1023/A:1010947911863.  Google Scholar

show all references

References:
[1]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[2]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1007/978-1-4020-8741-7_57.  Google Scholar

[3]

A. D. Banik, The infinite-buffer single server queue with a variant of multiple vacation policy and batch Markovian arrival process,, Applied Mathematical Modelling, 33 (2009), 3025.  doi: 10.1016/j.apm.2008.10.021.  Google Scholar

[4]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[5]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342.   Google Scholar

[6]

B. Doshi, Single server queues with vacation: A survey,, Queueing Systems, 1 (1986), 29.   Google Scholar

[7]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreilable queue,, European Journal of Operational Research, 203 (2010), 143.   Google Scholar

[8]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutotial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[9]

J. C. Ke, Operating characteristic analysis on the $M^{[X]}$/G/1 system with a variant vacation policy and balking,, Applied Mathematical Modelling, 31 (2007), 1321.  doi: 10.1016/j.apm.2006.02.012.  Google Scholar

[10]

J. C. Ke and F. M. Chang, Modified vacation policy for M/G/1 retrial queue with balking and feedback,, Computer & Industrial Engineering, 57 (2009), 433.  doi: 10.1016/j.cie.2009.01.002.  Google Scholar

[11]

J. C. Ke, H. I. Huang and Y. K. Chu, Batch arrival queue with N-policy and at most J vacations,, Applied Mathematical Modelling, 34 (2010), 451.  doi: 10.1016/j.apm.2009.06.003.  Google Scholar

[12]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247.  doi: 10.1016/j.ejor.2009.02.024.  Google Scholar

[13]

H. Takagi, "Queueing Analysis, A Foundation of Performance Evaluation, Volume 1: Vacation and Priority Systems,", Part 1. North-Holland Publishing Co., (1991).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", New York: Springer, (2006).   Google Scholar

[15]

T. Y. Wang, J. C. Ke and F. M. Chang, On the discrete-time Geo/G/1 queue with randomized vacations and at most $J$ vacations,, Applied Mathematical Modelling, 35 (2011), 2297.  doi: 10.1016/j.apm.2010.11.021.  Google Scholar

[16]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[17]

D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with and working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895.  doi: 10.3934/jimo.2012.8.895.  Google Scholar

[18]

Z. G. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations,, Queueing Systems, 38 (2001), 419.  doi: 10.1023/A:1010947911863.  Google Scholar

[1]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[2]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[3]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[4]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[5]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[6]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[7]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[8]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[11]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[12]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[13]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[14]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[15]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[16]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[17]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[18]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[19]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[20]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]