July  2014, 10(3): 929-943. doi: 10.3934/jimo.2014.10.929

Finite-time optimal consensus control for second-order multi-agent systems

1. 

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China

2. 

School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, China

Received  June 2012 Revised  July 2013 Published  November 2013

We propose an optimal consensus design method for solving a finite-time optimal control problem involving a second-order multi-agent system. With this method, the optimal consensus problem can be modeled as an optimal parameter selection problem with continuous state inequality constraints and free terminal time. By virtue of the constraint transcription method and a time scaling transform method, a gradient-based optimization algorithm is developed to solve this optimal parameter selection problem. Furthermore, a new consensus protocol is designed, by which the consensus value of the system velocity can be chosen to be an arbitrary value. For illustration, simulation studies are carried out to demonstrate the proposed method.
Citation: Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929
References:
[1]

E. A. Blanchard, R. C. Loxton and V. Rehbock, A computational algorithm for a class of non-smooth optimal control problems arising in aquaculture operations,, Applied Mathematics and Computation, 219 (2013), 8738.  doi: 10.1016/j.amc.2013.02.070.  Google Scholar

[2]

Y. C. Cao and W. Ren, Optimal linear-consensus algorithms: An LQR perspective,, IEEE Transactions on Systems, 40 (2010), 810.   Google Scholar

[3]

R. Carli, G. Como, P. Frasca and F. Garin, Distributed averaging on digital erasure networks,, Automatica J. IFAC, 47 (2011), 115.  doi: 10.1016/j.automatica.2010.10.015.  Google Scholar

[4]

T. Dierks, Formation Control of Mobile Robots and Unmanmed Aerial Vehicles,, Ph.D thesis, (2009).   Google Scholar

[5]

J. Fax and M. Murray, Information flow and cooperative control of vehicle formations,, IEEE Transactions on Automatic Control, 49 (2004), 1465.  doi: 10.1109/TAC.2004.834433.  Google Scholar

[6]

V. Gazi and K. M. Passino, Stability analysis of social foraging swarms,, IEEE Transactions on Systems Man Cybernet., 34 (2004), 539.  doi: 10.1109/TSMCB.2003.817077.  Google Scholar

[7]

V. Gupta, V. Hassibi and R. M. Murray, On sensor fusion in the presence of packet-dropping communication channels,, in 44th IEEE Conference on Decision and Control, (2005), 3547.  doi: 10.1109/CDC.2005.1582712.  Google Scholar

[8]

D. Jakovetic, J. Xavier and J. M. F. Moura, Cooperative convex optimization in networked systems: Augmented Lagrangian algorithms with directed Gossip communication,, IEEE Transactions on Signal Processing, 59 (2011), 3889.  doi: 10.1109/TSP.2011.2146776.  Google Scholar

[9]

C. H. Jiang, Q. Lin, C. J. Yu, K. L. Teo and G.-R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints,, J. Optim. Theory Appl., 154 (2012), 30.  doi: 10.1007/s10957-012-0006-9.  Google Scholar

[10]

P. Lin and Y. M. Jia, Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies,, Automatica J. IFAC, 45 (2009), 2154.  doi: 10.1016/j.automatica.2009.05.002.  Google Scholar

[11]

Y. Liu and K. M. Passino, Stable social foraging swarms in a noisy environment,, IEEE Transactions on Automatic Control, 49 (2004), 30.  doi: 10.1109/TAC.2003.821416.  Google Scholar

[12]

R. C. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455.  doi: 10.1109/TAC.2009.2029310.  Google Scholar

[13]

R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and control,, Automatica J. IFAC, 45 (2009), 2250.  doi: 10.1016/j.automatica.2009.05.029.  Google Scholar

[14]

R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica J. IFAC, 44 (2008), 2923.  doi: 10.1016/j.automatica.2008.04.011.  Google Scholar

[15]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of IEEE, 95 (2007), 215.  doi: 10.1109/JPROC.2006.887293.  Google Scholar

[16]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Transactions on Automatic Control, 49 (2004), 1520.  doi: 10.1109/TAC.2004.834113.  Google Scholar

[17]

R. Olfati-Saber and J. S. Shamma, Consensus filters for sensor networks and distributed sensor fusion,, in 44th IEEE Conference on Decision and Control, (2005), 6698.  doi: 10.1109/CDC.2005.1583238.  Google Scholar

[18]

W. Ren and R. Beard, Consensus seeking in multi-agent systems under dynamically changing interaction topologies,, IEEE Transactions on Automatic Control, 50 (2005), 655.  doi: 10.1109/TAC.2005.846556.  Google Scholar

[19]

W. Ren, R. W. Beard and E. M. Atkins, Information consensus in multivehicle cooperative control: Collective group behavior through local interaction,, IEEE Control System Magazine, 27 (2007), 71.   Google Scholar

[20]

H. Sayyaadi and M. R. Doostmohammadian, Finite-time consensus in directed switching network topologies and time-delayed communications,, Scientia Iranica, 18 (2011), 75.  doi: 10.1016/j.scient.2011.03.010.  Google Scholar

[21]

E. Semsar and K. Khorasani, Optimal control and game theoretic approaches to cooperative control of a team of multi-vehicle unmanned systems,, in Proceedings of the 2007 IEEE International Conference on, (2007), 628.  doi: 10.1109/ICNSC.2007.372852.  Google Scholar

[22]

A. Tahbaz-Salehi and A. Jadbabaie, A necessary and sufficient condition for consensus over random networks,, IEEE Transactions on Automatic Control, 53 (2008), 791.  doi: 10.1109/TAC.2008.917743.  Google Scholar

[23]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, Journal of the Australian Mathematical Society, 40 (1999), 314.  doi: 10.1017/S0334270000010936.  Google Scholar

[24]

K. L. Teo, C. J. Goh and K. H. Wong, A unified computational approach to optimal control problems,, in World Congress of Nonlinear Analysts '92, (1996), 2763.  doi: 10.1515/9783110883237.2763.  Google Scholar

[25]

L. Wang and F. Xiao, Finite-time consensus problems for networks of dynamic agents,, IEEE Transactions on Automatic Control, 55 (2010), 950.  doi: 10.1109/TAC.2010.2041610.  Google Scholar

[26]

X. L. Wang and Y. G. Hong, Finite-time consensus for multi-agent networks with second-order agent dynamics,, in Proceedings of the 17th IFAC World Congress, (2008), 15185.   Google Scholar

[27]

F. Xiao and L. Wang, Consensus protocols for discrete-time multi-agent systems with time-varying delays,, Automatica J. IFAC, 44 (2008), 2577.  doi: 10.1016/j.automatica.2008.02.017.  Google Scholar

[28]

L. Xiao and S. Boyd, Fast linear iterations for distributed averaging,, Systems Control Letters, 53 (2004), 65.  doi: 10.1016/j.sysconle.2004.02.022.  Google Scholar

[29]

W. Zhang and J. H. Hu, Optimal multi-agent coordination under tree formation constraints,, IEEE Transactions on Automatic Control, 53 (2008), 692.  doi: 10.1109/TAC.2008.919855.  Google Scholar

show all references

References:
[1]

E. A. Blanchard, R. C. Loxton and V. Rehbock, A computational algorithm for a class of non-smooth optimal control problems arising in aquaculture operations,, Applied Mathematics and Computation, 219 (2013), 8738.  doi: 10.1016/j.amc.2013.02.070.  Google Scholar

[2]

Y. C. Cao and W. Ren, Optimal linear-consensus algorithms: An LQR perspective,, IEEE Transactions on Systems, 40 (2010), 810.   Google Scholar

[3]

R. Carli, G. Como, P. Frasca and F. Garin, Distributed averaging on digital erasure networks,, Automatica J. IFAC, 47 (2011), 115.  doi: 10.1016/j.automatica.2010.10.015.  Google Scholar

[4]

T. Dierks, Formation Control of Mobile Robots and Unmanmed Aerial Vehicles,, Ph.D thesis, (2009).   Google Scholar

[5]

J. Fax and M. Murray, Information flow and cooperative control of vehicle formations,, IEEE Transactions on Automatic Control, 49 (2004), 1465.  doi: 10.1109/TAC.2004.834433.  Google Scholar

[6]

V. Gazi and K. M. Passino, Stability analysis of social foraging swarms,, IEEE Transactions on Systems Man Cybernet., 34 (2004), 539.  doi: 10.1109/TSMCB.2003.817077.  Google Scholar

[7]

V. Gupta, V. Hassibi and R. M. Murray, On sensor fusion in the presence of packet-dropping communication channels,, in 44th IEEE Conference on Decision and Control, (2005), 3547.  doi: 10.1109/CDC.2005.1582712.  Google Scholar

[8]

D. Jakovetic, J. Xavier and J. M. F. Moura, Cooperative convex optimization in networked systems: Augmented Lagrangian algorithms with directed Gossip communication,, IEEE Transactions on Signal Processing, 59 (2011), 3889.  doi: 10.1109/TSP.2011.2146776.  Google Scholar

[9]

C. H. Jiang, Q. Lin, C. J. Yu, K. L. Teo and G.-R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints,, J. Optim. Theory Appl., 154 (2012), 30.  doi: 10.1007/s10957-012-0006-9.  Google Scholar

[10]

P. Lin and Y. M. Jia, Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies,, Automatica J. IFAC, 45 (2009), 2154.  doi: 10.1016/j.automatica.2009.05.002.  Google Scholar

[11]

Y. Liu and K. M. Passino, Stable social foraging swarms in a noisy environment,, IEEE Transactions on Automatic Control, 49 (2004), 30.  doi: 10.1109/TAC.2003.821416.  Google Scholar

[12]

R. C. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455.  doi: 10.1109/TAC.2009.2029310.  Google Scholar

[13]

R. C. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and control,, Automatica J. IFAC, 45 (2009), 2250.  doi: 10.1016/j.automatica.2009.05.029.  Google Scholar

[14]

R. C. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica J. IFAC, 44 (2008), 2923.  doi: 10.1016/j.automatica.2008.04.011.  Google Scholar

[15]

R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems,, Proceedings of IEEE, 95 (2007), 215.  doi: 10.1109/JPROC.2006.887293.  Google Scholar

[16]

R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Transactions on Automatic Control, 49 (2004), 1520.  doi: 10.1109/TAC.2004.834113.  Google Scholar

[17]

R. Olfati-Saber and J. S. Shamma, Consensus filters for sensor networks and distributed sensor fusion,, in 44th IEEE Conference on Decision and Control, (2005), 6698.  doi: 10.1109/CDC.2005.1583238.  Google Scholar

[18]

W. Ren and R. Beard, Consensus seeking in multi-agent systems under dynamically changing interaction topologies,, IEEE Transactions on Automatic Control, 50 (2005), 655.  doi: 10.1109/TAC.2005.846556.  Google Scholar

[19]

W. Ren, R. W. Beard and E. M. Atkins, Information consensus in multivehicle cooperative control: Collective group behavior through local interaction,, IEEE Control System Magazine, 27 (2007), 71.   Google Scholar

[20]

H. Sayyaadi and M. R. Doostmohammadian, Finite-time consensus in directed switching network topologies and time-delayed communications,, Scientia Iranica, 18 (2011), 75.  doi: 10.1016/j.scient.2011.03.010.  Google Scholar

[21]

E. Semsar and K. Khorasani, Optimal control and game theoretic approaches to cooperative control of a team of multi-vehicle unmanned systems,, in Proceedings of the 2007 IEEE International Conference on, (2007), 628.  doi: 10.1109/ICNSC.2007.372852.  Google Scholar

[22]

A. Tahbaz-Salehi and A. Jadbabaie, A necessary and sufficient condition for consensus over random networks,, IEEE Transactions on Automatic Control, 53 (2008), 791.  doi: 10.1109/TAC.2008.917743.  Google Scholar

[23]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, Journal of the Australian Mathematical Society, 40 (1999), 314.  doi: 10.1017/S0334270000010936.  Google Scholar

[24]

K. L. Teo, C. J. Goh and K. H. Wong, A unified computational approach to optimal control problems,, in World Congress of Nonlinear Analysts '92, (1996), 2763.  doi: 10.1515/9783110883237.2763.  Google Scholar

[25]

L. Wang and F. Xiao, Finite-time consensus problems for networks of dynamic agents,, IEEE Transactions on Automatic Control, 55 (2010), 950.  doi: 10.1109/TAC.2010.2041610.  Google Scholar

[26]

X. L. Wang and Y. G. Hong, Finite-time consensus for multi-agent networks with second-order agent dynamics,, in Proceedings of the 17th IFAC World Congress, (2008), 15185.   Google Scholar

[27]

F. Xiao and L. Wang, Consensus protocols for discrete-time multi-agent systems with time-varying delays,, Automatica J. IFAC, 44 (2008), 2577.  doi: 10.1016/j.automatica.2008.02.017.  Google Scholar

[28]

L. Xiao and S. Boyd, Fast linear iterations for distributed averaging,, Systems Control Letters, 53 (2004), 65.  doi: 10.1016/j.sysconle.2004.02.022.  Google Scholar

[29]

W. Zhang and J. H. Hu, Optimal multi-agent coordination under tree formation constraints,, IEEE Transactions on Automatic Control, 53 (2008), 692.  doi: 10.1109/TAC.2008.919855.  Google Scholar

[1]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[2]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[3]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[4]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[5]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[6]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[7]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[10]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[11]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[12]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[13]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[14]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[15]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[16]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[17]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[18]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[19]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[20]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]