
Previous Article
A majorized penalty approach to inverse linear second order cone programming problems
 JIMO Home
 This Issue

Next Article
Finitetime optimal consensus control for secondorder multiagent systems
Quadratic optimization over one firstorder cone
1.  Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China 
2.  Industrial and Systems Engineering Department, North Carolina State University, Raleigh, NC 276957906, United States, United States 
References:
[1] 
F. Alizadeh and D. Goldfarb, Secondorder cone programming, Mathematical Programming, 95 (2003), 351. doi: 10.1007/s1010700203395. 
[2] 
E. D. Andersen, C. Roos and T. Terlaky, Notes on duality in second order and $p$order cone optimization, Optimization, 51 (2002), 627643. doi: 10.1080/0233193021000030751. 
[3] 
P. Belotti, J. C. Góez, I. Pólik, T. K. Ralphs and T. Terlaky, On families of quadratic surfaces having fixed intersections with two hyperplanes, Discrete Applied Mathematics, 161 (2013), 27782793. Available from: http://www.optimizationonline.org/DB_FILE/2012/08/3563.pdf. doi: 10.1016/j.dam.2013.05.017. 
[4] 
A. BenTal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, MPS/SIAM Series on Optimization, SIAM, Philadelphia, PA, 2001. doi: 10.1137/1.9780898718829. 
[5] 
E. Bishop and R. R. Phelps, The support functionals of a convex set, in Proceedings of Symposia in Pure Mathematics, Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, 2735. 
[6] 
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004. 
[7] 
S. Burer, On the copositive representation of binary and continous nonconvex quadratic programs, Mathematical Programming, 120 (2009), 479495. doi: 10.1007/s101070080223z. 
[8] 
S. Burer and K. M. Anstreicher, Secondordercone constraints for extended trustregion subproblems, SIAM Journal on Optimization, 23 (2013), 432451. doi: 10.1137/110826862. 
[9] 
Z. Deng, S.C. Fang, Q. Jin and W. Xing, Detecting copositivity of a symmetric matrix by an adaptive ellipsoidbased approximation scheme, European Journal of Operational Research, 229 (2013), 2128. doi: 10.1016/j.ejor.2013.02.031. 
[10] 
G. Eichfelder and J. Povh, On reformulations of nonconvex quadratic programs over convex cones by setsemidefinite constraints, preprint, 2010. Available from: http://www.optimizationonline.org/DB_FILE/2010/12/2843.pdf. 
[11] 
Q. Jin, Quadratically Constrained Quadratic Programming Problems and Extensions, Ph.D thesis, North Carolina State University, 2011. 
[12] 
Q. Jin, Y. Tian, Z. Deng, S.C. Fang and W. Xing, Exact computable representation of some secondorder cone constrained quadratic programming problems, Journal of Operations Research Society of China, 1 (2013), 107134. doi: 10.1007/s4030501300098. 
[13] 
C. Lu, Q. Jin, S.C. Fang, Z. Wang and W. Xing, An LMI based adaptive approximation scheme to cones of nonnegative quadratic functions, working paper, 2011. 
[14] 
M. W. Margaret, Advances in conebased preference modeling for decision making with multiple criteria, Decision Making in Manufacturing and Services, 1 (2007), 153173. 
[15] 
Y. Nesterov and A. Nemirovsky, Interiorpoint Polynomial Methods in Convex Programming, SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611970791. 
[16] 
R. T. Rockafellar, Convex Analysis, 2nd edition, Princeton University Press, Princeton, NJ, 1972. 
[17] 
J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optimization Methods and Software, 11/12 (1999), 625653. doi: 10.1080/10556789908805766. 
[18] 
J. F. Sturm and S. Z. Zhang, On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246267. doi: 10.1287/moor.28.2.246.14485. 
[19] 
Y. Tian, S.C. Fang, Z. Deng and W. Xing, Computable representation of the cone of nonnegative quadratic forms over a general secondorder cone and its application to completely positive programming, Journal of Industrial and Management Optimization, 9 (2013), 703721. doi: 10.3934/jimo.2013.9.703. 
[20] 
S. A. Vavasis, Nonlinear Optimization: Complexity Issues, International Series of Monographs on Computer Science, 8, The Clarendon Press, Oxford University Press, New York, 1991. 
[21] 
Y. Ye and S. Zhang, New results on quadratic minimization, SIAM Journal on Optimization, 14 (2003), 245267. doi: 10.1137/S105262340139001X. 
show all references
References:
[1] 
F. Alizadeh and D. Goldfarb, Secondorder cone programming, Mathematical Programming, 95 (2003), 351. doi: 10.1007/s1010700203395. 
[2] 
E. D. Andersen, C. Roos and T. Terlaky, Notes on duality in second order and $p$order cone optimization, Optimization, 51 (2002), 627643. doi: 10.1080/0233193021000030751. 
[3] 
P. Belotti, J. C. Góez, I. Pólik, T. K. Ralphs and T. Terlaky, On families of quadratic surfaces having fixed intersections with two hyperplanes, Discrete Applied Mathematics, 161 (2013), 27782793. Available from: http://www.optimizationonline.org/DB_FILE/2012/08/3563.pdf. doi: 10.1016/j.dam.2013.05.017. 
[4] 
A. BenTal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, MPS/SIAM Series on Optimization, SIAM, Philadelphia, PA, 2001. doi: 10.1137/1.9780898718829. 
[5] 
E. Bishop and R. R. Phelps, The support functionals of a convex set, in Proceedings of Symposia in Pure Mathematics, Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, 2735. 
[6] 
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004. 
[7] 
S. Burer, On the copositive representation of binary and continous nonconvex quadratic programs, Mathematical Programming, 120 (2009), 479495. doi: 10.1007/s101070080223z. 
[8] 
S. Burer and K. M. Anstreicher, Secondordercone constraints for extended trustregion subproblems, SIAM Journal on Optimization, 23 (2013), 432451. doi: 10.1137/110826862. 
[9] 
Z. Deng, S.C. Fang, Q. Jin and W. Xing, Detecting copositivity of a symmetric matrix by an adaptive ellipsoidbased approximation scheme, European Journal of Operational Research, 229 (2013), 2128. doi: 10.1016/j.ejor.2013.02.031. 
[10] 
G. Eichfelder and J. Povh, On reformulations of nonconvex quadratic programs over convex cones by setsemidefinite constraints, preprint, 2010. Available from: http://www.optimizationonline.org/DB_FILE/2010/12/2843.pdf. 
[11] 
Q. Jin, Quadratically Constrained Quadratic Programming Problems and Extensions, Ph.D thesis, North Carolina State University, 2011. 
[12] 
Q. Jin, Y. Tian, Z. Deng, S.C. Fang and W. Xing, Exact computable representation of some secondorder cone constrained quadratic programming problems, Journal of Operations Research Society of China, 1 (2013), 107134. doi: 10.1007/s4030501300098. 
[13] 
C. Lu, Q. Jin, S.C. Fang, Z. Wang and W. Xing, An LMI based adaptive approximation scheme to cones of nonnegative quadratic functions, working paper, 2011. 
[14] 
M. W. Margaret, Advances in conebased preference modeling for decision making with multiple criteria, Decision Making in Manufacturing and Services, 1 (2007), 153173. 
[15] 
Y. Nesterov and A. Nemirovsky, Interiorpoint Polynomial Methods in Convex Programming, SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611970791. 
[16] 
R. T. Rockafellar, Convex Analysis, 2nd edition, Princeton University Press, Princeton, NJ, 1972. 
[17] 
J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optimization Methods and Software, 11/12 (1999), 625653. doi: 10.1080/10556789908805766. 
[18] 
J. F. Sturm and S. Z. Zhang, On cones of nonnegative quadratic functions, Mathematics of Operations Research, 28 (2003), 246267. doi: 10.1287/moor.28.2.246.14485. 
[19] 
Y. Tian, S.C. Fang, Z. Deng and W. Xing, Computable representation of the cone of nonnegative quadratic forms over a general secondorder cone and its application to completely positive programming, Journal of Industrial and Management Optimization, 9 (2013), 703721. doi: 10.3934/jimo.2013.9.703. 
[20] 
S. A. Vavasis, Nonlinear Optimization: Complexity Issues, International Series of Monographs on Computer Science, 8, The Clarendon Press, Oxford University Press, New York, 1991. 
[21] 
Y. Ye and S. Zhang, New results on quadratic minimization, SIAM Journal on Optimization, 14 (2003), 245267. doi: 10.1137/S105262340139001X. 
[1] 
Ye Tian, ShuCherng Fang, Zhibin Deng, Wenxun Xing. Computable representation of the cone of nonnegative quadratic forms over a general secondorder cone and its application to completely positive programming. Journal of Industrial and Management Optimization, 2013, 9 (3) : 703721. doi: 10.3934/jimo.2013.9.703 
[2] 
Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear secondorder cone programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 171189. doi: 10.3934/jimo.2013.9.171 
[3] 
Shiyun Wang, YongJin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 965976. doi: 10.3934/jimo.2014.10.965 
[4] 
Liping Tang, Xinmin Yang, Ying Gao. Higherorder symmetric duality for multiobjective programming with cone constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 18731884. doi: 10.3934/jimo.2019033 
[5] 
Ye Tian, Qingwei Jin, Zhibin Deng. Quadratic optimization over a polyhedral cone. Journal of Industrial and Management Optimization, 2016, 12 (1) : 269283. doi: 10.3934/jimo.2016.12.269 
[6] 
Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial and Management Optimization, 2014, 10 (2) : 543556. doi: 10.3934/jimo.2014.10.543 
[7] 
Cheng Lu, Zhenbo Wang, Wenxun Xing, ShuCherng Fang. Extended canonical duality and conic programming for solving 01 quadratic programming problems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 779793. doi: 10.3934/jimo.2010.6.779 
[8] 
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level secondorder cone programming problem. Journal of Industrial and Management Optimization, 2015, 11 (4) : 11111125. doi: 10.3934/jimo.2015.11.1111 
[9] 
Narges Torabi Golsefid, Maziar Salahi. Second order cone programming formulation of the fixed cost allocation in DEA based on Nash bargaining game. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021032 
[10] 
Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. Firstorder optimality conditions for convex semiinfinite minmax programming with noncompact sets. Journal of Industrial and Management Optimization, 2009, 5 (4) : 851866. doi: 10.3934/jimo.2009.5.851 
[11] 
Qingsong Duan, Mengwei Xu, Liwei Zhang, Sainan Zhang. Hadamard directional differentiability of the optimal value of a linear secondorder conic programming problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 30853098. doi: 10.3934/jimo.2020108 
[12] 
Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 10271039. doi: 10.3934/jimo.2011.7.1027 
[13] 
Shrikrishna G. Dani. Simultaneous diophantine approximation with quadratic and linear forms. Journal of Modern Dynamics, 2008, 2 (1) : 129138. doi: 10.3934/jmd.2008.2.129 
[14] 
Ziye Shi, Qingwei Jin. Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 871882. doi: 10.3934/jimo.2014.10.871 
[15] 
Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomialtime interiorpoint method for circular cone programming based on kernel functions. Journal of Industrial and Management Optimization, 2016, 12 (2) : 739756. doi: 10.3934/jimo.2016.12.739 
[16] 
Yanqin Bai, Xuerui Gao, Guoqiang Wang. Primaldual interiorpoint algorithms for convex quadratic circular cone optimization. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 211231. doi: 10.3934/naco.2015.5.211 
[17] 
Yanqin Bai, Lipu Zhang. A fullNewton step interiorpoint algorithm for symmetric cone convex quadratic optimization. Journal of Industrial and Management Optimization, 2011, 7 (4) : 891906. doi: 10.3934/jimo.2011.7.891 
[18] 
Qing Liu, Bingo WingKuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated Mchannel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial and Management Optimization, 2021, 17 (4) : 19932011. doi: 10.3934/jimo.2020055 
[19] 
Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 653670. doi: 10.3934/dcds.1998.4.653 
[20] 
ShuCherng Fang, David Y. Gao, RueyLin Sheu, SoonYi Wu. Canonical dual approach to solving 01 quadratic programming problems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 125142. doi: 10.3934/jimo.2008.4.125 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]