Citation: |
[1] |
R. P. Agdeppa, N. Yamashita and M. Fukushima, Convex expected residual models for stochastic affine variational inequality problems and its applications to the traffic equilibrium problem, Pac. J. Optim., 6 (2010), 3-19. |
[2] |
X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Math. Oper. Res., 30 (2005), 1022-1038.doi: 10.1287/moor.1050.0160. |
[3] |
X. Chen, R. B.-J. Wets and Y. Zhang, Stochastic variational inequalities: Residual minimization smoothing sample average approximations, SIAM J. Optimiz., 22 (2012), 649-673.doi: 10.1137/110825248. |
[4] |
X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems, Math. Program., 117 (2009), 51-80.doi: 10.1007/s10107-007-0163-z. |
[5] |
F. Y. Chen, H Yan and L Yao, A newsvendor pricing game, IEEE T. Syst. Man Cy. A, 34 (2004), 450-456.doi: 10.1109/TSMCA.2004.826290. |
[6] |
S. Dafermos, Traffic equilibrium and variational inequalities, Transport. Sci., 14 (1980), 42-54.doi: 10.1287/trsc.14.1.42. |
[7] |
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-varlag, New York, 2003. |
[8] |
H. Fang, X. Chen and M. Fukushima, Stochastic $R_0$ matrix linear complementarity problems, SIAM J. Optimiz., 18 (2007), 482-506.doi: 10.1137/050630805. |
[9] |
M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program., 53 (1992), 99-110.doi: 10.1007/BF01585696. |
[10] |
M. Fukushima, N. Yamashita and K. Taji, Unconstrained optimization reformulations of variational inequality problems, J. Optimiz. Theory App., 92 (1997), 439-456.doi: 10.1023/A:1022660704427. |
[11] |
G. Gürkan, A. Y. Özge and S. M. Robinson, Sample-path solution of stochastic variational inequalities, Math. Program., 84 (1999), 313-333.doi: 10.1007/s101070050024. |
[12] |
H. Jiang and H. F. Xu, Stochastic approximation approaches to the stochastic variational inequality problem, IEEE T. Automat. Contr., 53 (2008), 1462-1475.doi: 10.1109/TAC.2008.925853. |
[13] |
G.-H. Lin and M. Fukushima, Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A survey, Pac. J. Optim., 6 (2010), 455-482. |
[14] |
M. J. Luo and G. H. Lin, Expected residual minimization method for stochastic variational inequality problems, J. Optimiz. Theory App., 140 (2009), 103-116.doi: 10.1007/s10957-008-9439-6. |
[15] |
S. Mahajan and G. van Ryzin, Inventory competition under dynamic consumer choice, Oper. Res., 49 (2001), 646-657.doi: 10.1287/opre.49.5.646.10603. |
[16] |
F. W. Meng and H. Xu, A regularized sample average approximation method for stochastic mathematical programs with nonsmooth equality constraints, SIAM J. Optimiz., 17 (2006), 891-919.doi: 10.1137/050638242. |
[17] |
M. H. Ngo and V. Krishnamurthy, Game theoretic cross-layer transmission policies in multipacket reception wireless networks, IEEE T. Signal Proces., 55 (2007), 1911-1926.doi: 10.1109/TSP.2006.889403. |
[18] |
J.-M. Peng, Equivalence of variational inequality problems to unconstrained optimization, Math. Program., 78 (1997), 347-355.doi: 10.1007/BF02614360. |
[19] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 317, Springer-Verlag, Berlin, 1998.doi: 10.1007/978-3-642-02431-3. |
[20] |
R. Y. Rubinstein and A. Shapiro, Discrete Event Systems. Sensitivity Analysis and Stochastic Optimization by the Score Function Method, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Ltd., Chichester, 1993. |
[21] |
A. Ruszczyński and A. Shapiro, eds., Stochastic Programming, Handbooks in Operations Research and Management Science, 10, Elsevier Science B.V., Amsterdam, 2003. |
[22] |
A. Shapiro and H. F. Xu, Stochastic mathematical programs with equilibrium constraints, modelling and sample average approximation, Optimization, 57 (2008), 395-418.doi: 10.1080/02331930801954177. |
[23] |
B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser and A. Shapiro, The sample average approximation method applied to stochastic routing problems: A omputational study, Comput. Optim. Appl., 24 (2003), 289-333.doi: 10.1023/A:1021814225969. |
[24] |
M. Wang and M. M. Ali, Stochastic nonlinear complementarity problems: Stochastic programming reformulation and penalty-based approximation method, J. Optimiz. Theory App., 144 (2010), 597-614.doi: 10.1007/s10957-009-9606-4. |
[25] |
M. Wang, M. M. Ali and G. Lin, Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks, J. Ind. Manag. Optim., 7 (2011), 317-345. |
[26] |
M. Wang, G. Lin, Y. Gao and M. Ali, Sample average approximation method for a class of stochastic variational inequality problems, J. Syst. Sci. Complex., 24 (2011), 1143-1153.doi: 10.1007/s11424-011-0948-2. |
[27] |
H. Xu, Sample average approximation method for a class of stochastic variational inequality problems, Asia-Pac. J. Oper. Res., 27 (2010), 103-119.doi: 10.1142/S0217595910002569. |
[28] |
H. Xu and F. Meng, Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints, Math. Oper. Res., 32 (2007), 648-668.doi: 10.1287/moor.1070.0260. |
[29] |
C. Zhang and X. Chen, Smoothing projected gradient method and its application to stochastic linear complementarity problems, SIAM J. Optimiz., 20 (2009), 627-649.doi: 10.1137/070702187. |