July  2015, 11(3): 1021-1040. doi: 10.3934/jimo.2015.11.1021

Optimal inventory policies for serial-type and assembly-type supply chains with equal sized batch

1. 

Department of Business Administration, Takming University of Science and Technology, 56 Huan-Shan Rd, Section 1, Taipei 114, Taiwan

2. 

Department of Logistics, Takming University of Science and Technology, 56 Huan-Shan Rd, Section 1, Taipei 114, Taiwan, Taiwan

Received  May 2013 Revised  May 2014 Published  October 2014

This study focuses on the inventory problems for serial-type and assembly-type supply chains. Since the mainline and each branch line of the assembly-type supply chain can be treated as a serial-type supply chain, a model of a serial-type supply chain is first constructed and then an integrated model is developed for the whole assembly-type supply chain. Both problems are solved optimally by the proposed polynomial-time algorithm, which determines the economic lot size, the optimal batch sizes, and the number of batches for each stage. Numerical examples are included to illustrate the algorithmic procedures.
Citation: Jason Chao-Hsien Pan, Ku-Kuang Chang, Yu-Cheng Hsiao. Optimal inventory policies for serial-type and assembly-type supply chains with equal sized batch. Journal of Industrial & Management Optimization, 2015, 11 (3) : 1021-1040. doi: 10.3934/jimo.2015.11.1021
References:
[1]

G. P. Cachon and P. H. Zipkin, Competitive and cooperative inventory policies in a two-stage supply chain,, Management Science, 45 (1999), 936.  doi: 10.1287/mnsc.45.7.936.  Google Scholar

[2]

H. Glock, Batch sizing with controllable production rates,, Int. J. Prod. Res., 48 (2010), 5925.  doi: 10.1080/00207540903170906.  Google Scholar

[3]

S. K. Goyal, Determination of optimum production quantity for a two-stage production system,, Oper. Res. Q., 28 (1977), 865.  doi: 10.1057/jors.1977.174.  Google Scholar

[4]

S. K. Goyal, Economic batch quantity in a multi-stage production system,, Int. J. Prod. Res., 16 (1978), 267.  doi: 10.1080/00207547808930019.  Google Scholar

[5]

S. K. Goyal, Note on: Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 23 (1976), 332.  doi: 10.1287/mnsc.23.3.332.  Google Scholar

[6]

S. K. Goyal and A. Z. Szendrovits, A constant lot size model with equal and unequal sized batch shipments between production stages,, Eng. Costs Prod. Econ., 10 (1986), 203.  doi: 10.1016/S0167-188X(86)80002-7.  Google Scholar

[7]

W. T. Ho, J. C. H. Pan and Y. C. Hsiao, Optimizing multi-stage production for an assembly-type supply chain with unequal sized batch shipments,, J Optim Theory Appl., 153 (2012), 513.  doi: 10.1007/s10957-011-9951-y.  Google Scholar

[8]

J. K. Jha and K. Shanker, Two-echelon supply chain inventory model with controllable lead time and service level constraint,, Comput. Ind. Eng., 57 (2009), 1096.  doi: 10.1016/j.cie.2009.04.018.  Google Scholar

[9]

H. T. Lee and J. C. Wu, A study on inventory replenishment policies in a two-echelon supply chain system,, Comput. Ind. Eng., 51 (2006), 257.  doi: 10.1016/j.cie.2006.01.005.  Google Scholar

[10]

R. R. Lummus, R. J. Vokurka and K. L. Alber, Strategic supply chain planning,, Journal of Production Inventory Management, 39 (1998), 49.   Google Scholar

[11]

N. Y. Shenas, A. E. Jahromi and S. T. A. Niaki, General bounds for the optimal value of retailers' reorder point in a two-level inventory control system with and without information sharing,, Int. J. Adv. Manuf. Technol., 48 (2010), 383.  doi: 10.1007/s00170-009-2280-8.  Google Scholar

[12]

Z. Szendrovits, Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 22 (1975), 298.  doi: 10.1287/mnsc.22.3.298.  Google Scholar

[13]

Z. Szendrovits and Z. Drezner, Optimizing multi-stage production with constant lot size and varying numbers of batches,, Omega-International Journal of Management Science, 8 (1980), 623.  doi: 10.1016/0305-0483(80)90003-1.  Google Scholar

[14]

C. Vercellis, Multi-plant production planning in capacitated self-configuring two-stage serial systems,, Eur. J. Oper. Res., 119 (1999), 451.  doi: 10.1016/S0377-2217(99)00146-0.  Google Scholar

[15]

S. Wang and B. R. Sarker, An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy,, Eur. J. Oper. Res., 162 (2005), 153.  doi: 10.1016/j.ejor.2003.10.038.  Google Scholar

show all references

References:
[1]

G. P. Cachon and P. H. Zipkin, Competitive and cooperative inventory policies in a two-stage supply chain,, Management Science, 45 (1999), 936.  doi: 10.1287/mnsc.45.7.936.  Google Scholar

[2]

H. Glock, Batch sizing with controllable production rates,, Int. J. Prod. Res., 48 (2010), 5925.  doi: 10.1080/00207540903170906.  Google Scholar

[3]

S. K. Goyal, Determination of optimum production quantity for a two-stage production system,, Oper. Res. Q., 28 (1977), 865.  doi: 10.1057/jors.1977.174.  Google Scholar

[4]

S. K. Goyal, Economic batch quantity in a multi-stage production system,, Int. J. Prod. Res., 16 (1978), 267.  doi: 10.1080/00207547808930019.  Google Scholar

[5]

S. K. Goyal, Note on: Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 23 (1976), 332.  doi: 10.1287/mnsc.23.3.332.  Google Scholar

[6]

S. K. Goyal and A. Z. Szendrovits, A constant lot size model with equal and unequal sized batch shipments between production stages,, Eng. Costs Prod. Econ., 10 (1986), 203.  doi: 10.1016/S0167-188X(86)80002-7.  Google Scholar

[7]

W. T. Ho, J. C. H. Pan and Y. C. Hsiao, Optimizing multi-stage production for an assembly-type supply chain with unequal sized batch shipments,, J Optim Theory Appl., 153 (2012), 513.  doi: 10.1007/s10957-011-9951-y.  Google Scholar

[8]

J. K. Jha and K. Shanker, Two-echelon supply chain inventory model with controllable lead time and service level constraint,, Comput. Ind. Eng., 57 (2009), 1096.  doi: 10.1016/j.cie.2009.04.018.  Google Scholar

[9]

H. T. Lee and J. C. Wu, A study on inventory replenishment policies in a two-echelon supply chain system,, Comput. Ind. Eng., 51 (2006), 257.  doi: 10.1016/j.cie.2006.01.005.  Google Scholar

[10]

R. R. Lummus, R. J. Vokurka and K. L. Alber, Strategic supply chain planning,, Journal of Production Inventory Management, 39 (1998), 49.   Google Scholar

[11]

N. Y. Shenas, A. E. Jahromi and S. T. A. Niaki, General bounds for the optimal value of retailers' reorder point in a two-level inventory control system with and without information sharing,, Int. J. Adv. Manuf. Technol., 48 (2010), 383.  doi: 10.1007/s00170-009-2280-8.  Google Scholar

[12]

Z. Szendrovits, Manufacturing cycle time determination for a multi-stage economic production quantity model,, Management Science, 22 (1975), 298.  doi: 10.1287/mnsc.22.3.298.  Google Scholar

[13]

Z. Szendrovits and Z. Drezner, Optimizing multi-stage production with constant lot size and varying numbers of batches,, Omega-International Journal of Management Science, 8 (1980), 623.  doi: 10.1016/0305-0483(80)90003-1.  Google Scholar

[14]

C. Vercellis, Multi-plant production planning in capacitated self-configuring two-stage serial systems,, Eur. J. Oper. Res., 119 (1999), 451.  doi: 10.1016/S0377-2217(99)00146-0.  Google Scholar

[15]

S. Wang and B. R. Sarker, An assembly-type supply chain system controlled by kanbans under a just-in-time delivery policy,, Eur. J. Oper. Res., 162 (2005), 153.  doi: 10.1016/j.ejor.2003.10.038.  Google Scholar

[1]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[2]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[3]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[4]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[5]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[6]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[7]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[8]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (1)

[Back to Top]