-
Previous Article
Approximate and exact formulas for the $(Q,r)$ inventory model
- JIMO Home
- This Issue
-
Next Article
Optimization analysis of the machine repair problem with multiple vacations and working breakdowns
Statistical process control optimization with variable sampling interval and nonlinear expected loss
1. | Department of Applied Mathematics, Ort Braude College of Engineering, 51 Snunit Str., P.O.B. 78, Karmiel 2161002, Israel, Israel |
2. | Department of Industrial Engineering and Management, Ort Braude College of Engineering, 51 Snunit Str., P.O.B. 78, Karmiel 2161002, Israel |
References:
[1] |
R. W. Amin and R. Hemasinha, The switching behavior of X charts with variable sampling intervals,, Communication in Statistics - Theory and Methods, 22 (1993), 2081.
doi: 10.1080/03610929308831136. |
[2] |
R. W. Amin and R. W. Miller, A robustness study of X charts with variable sampling intervals,, Journal of Quality Technology, 25 (1993), 36. Google Scholar |
[3] |
V. Babrauskas, Heat Release Rates,, in SFPE Handbook of Fire Protection Engineering, (2008), 1. Google Scholar |
[4] |
E. Bashkansky and V. Y. Glizer, Novel approach to adaptive statistical process control optimization with variable sampling interval and minimum expected loss,, International Journal of Quality Engineering and Technology, 3 (2012), 91. Google Scholar |
[5] |
M. A. K. Bulelzai and J. L. A. Dubbeldam, Long time evolution of atherosclerotic plaques,, Journal of Theoretical Biology, 297 (2012), 1.
doi: 10.1016/j.jtbi.2011.11.023. |
[6] |
T. E. Carpenter, J. M. O'Brien, A. Hagerman and B. McCarl, Epidemic and economic impacts of delayed detection of foot-and-mouth disease: A case study of a simulated outbreak in California,, Journal of Veterinary Diagnostic Investigation, 23 (2011), 26.
doi: 10.1177/104063871102300104. |
[7] |
A. F. B. Costa, X control chart with variable sample size,, Journal of Quality Technology, 26 (1994), 155. Google Scholar |
[8] |
A. F. B. Costa, X charts with variable sample sizes and sampling intervals,, Journal of Quality Technology, 29 (1997), 197. Google Scholar |
[9] |
A. F. B. Costa, Joint X and R control charts with variable parameters,, IIE Transactions, 30 (1998), 505. Google Scholar |
[10] |
A. F. B. Costa, X charts with variable parameters,, Journal of Quality Technology, 31 (1999), 408. Google Scholar |
[11] |
A. F. B. Costa and M. S. De Magalhães, An adaptive chart for monitoring the process mean and variance,, Quality and Reliability Engineering International, 23 (2007), 821.
doi: 10.1002/qre.842. |
[12] |
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration,, Dover Publications, (2007).
|
[13] |
J. P. Dussault, J. A. Ferland and B. Lemaire, Convex quadratic programming with one constraint and bounded variables,, Mathematical Programming, 36 (1986), 90.
doi: 10.1007/BF02591992. |
[14] |
I. M. Gelfand and S. V. Fomin, Calculus of Variations,, Prentice-Hall, (1963).
|
[15] |
A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems,, North-Holland Pub. Co., (1979).
|
[16] |
S. Kim and D. M. Frangopol, Optimum inspection planning for minimizing fatigue damage detection delay of ship hull structures,, International Journal of Fatigue, 33 (2011), 448.
doi: 10.1016/j.ijfatigue.2010.09.018. |
[17] |
G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers,, McGraw-Hill Book Company, (1968).
|
[18] |
D. C. Montgomery, Introduction to Statistical Quality Control,, John Wiley and Sons Inc., (2005). Google Scholar |
[19] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Interscience, (1962).
|
[20] |
S. S. Prabhu, D. C. Montgomery and G. C. Runger, A combined adaptive sample size and sampling interval X control scheme,, Journal of Quality Technology, 26 (1994), 164. Google Scholar |
[21] |
M. R. Reynolds, Evaluating properties of variable sampling interval control charts,, Sequentional Analysis, 14 (1995), 59.
doi: 10.1080/07474949508836320. |
[22] |
M. R. Reynolds, R. W. Amin, J. C. Arnold and J. Nachlas, X charts with variable sampling intervals,, Technometrics, 30 (1988), 181.
doi: 10.2307/1270164. |
[23] |
S. Ross, A First Course in Probability,, 9 ed., (2009). Google Scholar |
[24] |
P. Sebastião and C. G. Soares, Modeling the fate of oil spills at sea,, Spill Science and Technology Bulletin, 2 (1995), 121.
doi: 10.1016/S1353-2561(96)00009-6. |
[25] |
G. Taguchi, S. Chowdhury and Y. Wu, Taguchi's Quality Engineering Handbook,, John Wiley and Sons Inc., (2007).
doi: 10.1002/9780470258354. |
show all references
References:
[1] |
R. W. Amin and R. Hemasinha, The switching behavior of X charts with variable sampling intervals,, Communication in Statistics - Theory and Methods, 22 (1993), 2081.
doi: 10.1080/03610929308831136. |
[2] |
R. W. Amin and R. W. Miller, A robustness study of X charts with variable sampling intervals,, Journal of Quality Technology, 25 (1993), 36. Google Scholar |
[3] |
V. Babrauskas, Heat Release Rates,, in SFPE Handbook of Fire Protection Engineering, (2008), 1. Google Scholar |
[4] |
E. Bashkansky and V. Y. Glizer, Novel approach to adaptive statistical process control optimization with variable sampling interval and minimum expected loss,, International Journal of Quality Engineering and Technology, 3 (2012), 91. Google Scholar |
[5] |
M. A. K. Bulelzai and J. L. A. Dubbeldam, Long time evolution of atherosclerotic plaques,, Journal of Theoretical Biology, 297 (2012), 1.
doi: 10.1016/j.jtbi.2011.11.023. |
[6] |
T. E. Carpenter, J. M. O'Brien, A. Hagerman and B. McCarl, Epidemic and economic impacts of delayed detection of foot-and-mouth disease: A case study of a simulated outbreak in California,, Journal of Veterinary Diagnostic Investigation, 23 (2011), 26.
doi: 10.1177/104063871102300104. |
[7] |
A. F. B. Costa, X control chart with variable sample size,, Journal of Quality Technology, 26 (1994), 155. Google Scholar |
[8] |
A. F. B. Costa, X charts with variable sample sizes and sampling intervals,, Journal of Quality Technology, 29 (1997), 197. Google Scholar |
[9] |
A. F. B. Costa, Joint X and R control charts with variable parameters,, IIE Transactions, 30 (1998), 505. Google Scholar |
[10] |
A. F. B. Costa, X charts with variable parameters,, Journal of Quality Technology, 31 (1999), 408. Google Scholar |
[11] |
A. F. B. Costa and M. S. De Magalhães, An adaptive chart for monitoring the process mean and variance,, Quality and Reliability Engineering International, 23 (2007), 821.
doi: 10.1002/qre.842. |
[12] |
P. J. Davis and P. Rabinowitz, Methods of Numerical Integration,, Dover Publications, (2007).
|
[13] |
J. P. Dussault, J. A. Ferland and B. Lemaire, Convex quadratic programming with one constraint and bounded variables,, Mathematical Programming, 36 (1986), 90.
doi: 10.1007/BF02591992. |
[14] |
I. M. Gelfand and S. V. Fomin, Calculus of Variations,, Prentice-Hall, (1963).
|
[15] |
A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems,, North-Holland Pub. Co., (1979).
|
[16] |
S. Kim and D. M. Frangopol, Optimum inspection planning for minimizing fatigue damage detection delay of ship hull structures,, International Journal of Fatigue, 33 (2011), 448.
doi: 10.1016/j.ijfatigue.2010.09.018. |
[17] |
G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers,, McGraw-Hill Book Company, (1968).
|
[18] |
D. C. Montgomery, Introduction to Statistical Quality Control,, John Wiley and Sons Inc., (2005). Google Scholar |
[19] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes,, Interscience, (1962).
|
[20] |
S. S. Prabhu, D. C. Montgomery and G. C. Runger, A combined adaptive sample size and sampling interval X control scheme,, Journal of Quality Technology, 26 (1994), 164. Google Scholar |
[21] |
M. R. Reynolds, Evaluating properties of variable sampling interval control charts,, Sequentional Analysis, 14 (1995), 59.
doi: 10.1080/07474949508836320. |
[22] |
M. R. Reynolds, R. W. Amin, J. C. Arnold and J. Nachlas, X charts with variable sampling intervals,, Technometrics, 30 (1988), 181.
doi: 10.2307/1270164. |
[23] |
S. Ross, A First Course in Probability,, 9 ed., (2009). Google Scholar |
[24] |
P. Sebastião and C. G. Soares, Modeling the fate of oil spills at sea,, Spill Science and Technology Bulletin, 2 (1995), 121.
doi: 10.1016/S1353-2561(96)00009-6. |
[25] |
G. Taguchi, S. Chowdhury and Y. Wu, Taguchi's Quality Engineering Handbook,, John Wiley and Sons Inc., (2007).
doi: 10.1002/9780470258354. |
[1] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[2] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[3] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[4] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[5] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[6] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[7] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[8] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[9] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[10] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[11] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[12] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[13] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[14] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[15] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[16] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[17] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[18] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[19] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[20] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]