• Previous Article
    Numerical solution of a pursuit-evasion differential game involving two spacecraft in low earth orbit
  • JIMO Home
  • This Issue
  • Next Article
    An interactive MOLP method for solving output-oriented DEA problems with undesirable factors
October  2015, 11(4): 1111-1125. doi: 10.3934/jimo.2015.11.1111

Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem

1. 

School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China, China

Received  September 2012 Revised  July 2014 Published  March 2015

When there is uncertainty in the lower level optimization problem of a bilevel programming, it can be formulated by a robust optimization method as a bilevel program with lower level second-order cone programming problem (SOCBLP). In this paper, we show that the Lagrange multiplier set mapping of the lower level problem of a class of the SOCBLPs is upper semicontinuous under suitable assumptions. Based on this fact, we detect the similarities and relationships between the SOCBLP and its KKT reformulation. Then we derive the specific expression of the critical cone at a feasible point, and show that the second order sufficient conditions are sufficient for the second order growth at an M-stationary point of the SOCBLP under suitable conditions.
Citation: Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111
References:
[1]

F. Alizadeh and D. Goldfarb, Second-order cone Programming,, Math. Program., 95 (2003), 3.  doi: 10.1007/s10107-002-0339-5.  Google Scholar

[2]

A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust Optimization,, Princeton University Press, (2009).  doi: 10.1515/9781400831050.  Google Scholar

[3]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, Springer, (2000).  doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[4]

X. J. Chen, Smoothing methods for complementarity problems and their applications: A survey,, J. Oper. Res. Soc. Japan, 43 (2000), 32.  doi: 10.1016/S0453-4514(00)88750-5.  Google Scholar

[5]

X. -D. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments for second-order cone complementarity problems,, Comput. Optim. Appl., 25 (2003), 39.  doi: 10.1023/A:1022996819381.  Google Scholar

[6]

X. J. Chen and S. H. Xiang, Computation of error bounds for P-matrix linear complementarity problems,, Math. Program., 106 (2006), 513.  doi: 10.1007/s10107-005-0645-9.  Google Scholar

[7]

X. Chi, Z. Wan and Z. Hao, The models of bilevel programming with lower level second-order cone programs,, J. Inequal. Appl., 2014 (2014).  doi: 10.1186/1029-242X-2014-168.  Google Scholar

[8]

S. Dempe, Foundations of Bilevel Programming,, Kluwer Academic Publishers, (2002).   Google Scholar

[9]

S. Dempe, Bilevel Optimization Problem: Existence of Optimal Solutions and Optimality Conditions, Report of CIMPA school, University of Delhi,, 2013., ().   Google Scholar

[10]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical programming with complementarity constraints?,, Math. Program., 131 (2012), 37.  doi: 10.1007/s10107-010-0342-1.  Google Scholar

[11]

C. Ding, D. Sun and J. Y. Ye, First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints,, Math. Program., 147 (2014), 539.  doi: 10.1007/s10107-013-0735-z.  Google Scholar

[12]

T. Ejiri, A Smoothing Method for Mathematical Programs with Second-Order Cone Complementarity Constraints,, Master thesis, (2007).   Google Scholar

[13]

U. Faraut and A. Korányi, Analysis on Symmetric Cones,, Oxford University Press, (1994).   Google Scholar

[14]

M. S. Gowda, R. Sznajder and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras,, Linear Algebra Appl., 393 (2004), 203.  doi: 10.1016/j.laa.2004.03.028.  Google Scholar

[15]

P. B. Hermanns and N. V. Thoai, Global optimization algorithm for solving bilevel programming problems with quadratic lower levels,, J. Ind. Manag Optim., 6 (2010), 177.  doi: 10.3934/jimo.2010.6.177.  Google Scholar

[16]

Z. H. Huang and N. Lu, Global and global linear convergence of smoothing algorithm for the Cartesian $P_{*}(\kappa)$-SCLCP,, J. Ind. Manag Optim., 8 (2012), 67.  doi: 10.3934/jimo.2012.8.67.  Google Scholar

[17]

Y. Jiang, Optimization Problems with Second-Order Cone Equilibrium Constraints, (Chinese), Ph.D. thesis, (2011).   Google Scholar

[18]

H. Th. Jongen and G.-W. Weber, Nonlinear optimization: Characterization of structural optimization,, J. Glob. Optim., 1 (1991), 47.  doi: 10.1007/BF00120665.  Google Scholar

[19]

M. Kojima, Strongly stable stationary solutions in nonlinear programs,, in Analysis and Computation of Fixed Points (eds. S.M. Robinson), 43 (1980), 93.   Google Scholar

[20]

Y. J. Kuo and H. D. Mittelmann, Interior point methods for second-order cone programming and OR applications,, Comput. Optim. Appl., 28 (2004), 255.  doi: 10.1023/B:COAP.0000033964.95511.23.  Google Scholar

[21]

X. H. Liu and W. Z. Gu, Smoothing Newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity problems over symmetric cones,, J. Ind. Manag Optim., 6 (2010), 363.  doi: 10.3934/jimo.2010.6.363.  Google Scholar

[22]

Y. Liu and L. Zhang, Convergence analysis of the augmented Lagrangian method for nonlinear second-order cone optimization problems,, Nonlinear Anal., 67 (2007), 1359.  doi: 10.1016/j.na.2006.07.022.  Google Scholar

[23]

M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of second-order cone programming,, Linear Algebra Appl., 284 (1998), 193.  doi: 10.1016/S0024-3795(98)10032-0.  Google Scholar

[24]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, vol.I : Basic Theory,, Springer, (2006).   Google Scholar

[25]

J. V. Outrata and D. Sun, On the coderivative of the projection operator onto the second-order cone,, Set-Valued Anal., 16 (2008), 999.  doi: 10.1007/s11228-008-0092-x.  Google Scholar

[26]

R. T. Rockafellar and R. J. -B. Wets, Variational Analysis,, Springer, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[27]

J. Wu, L. Zhang and Y. Zhang, A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations,, J. Glob. Optim., 55 (2013), 359.  doi: 10.1007/s10898-012-9880-9.  Google Scholar

[28]

H. Yamamura, T. Okuno, S. Hayashi and M. Fukushima, A smoothing SQP method for mathematical programms with linear second-order cone complementarity constraints,, Pac. J. Optim., 9 (2013), 345.   Google Scholar

[29]

T. Yan and M. Fukushima, Smoothing method for mathematical programs with symmetric cone complementarity constraints,, Optimization, 60 (2011), 113.  doi: 10.1080/02331934.2010.541458.  Google Scholar

[30]

Y. Zhang, L. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints,, Set-Valued Anal., 19 (2011), 609.  doi: 10.1007/s11228-011-0190-z.  Google Scholar

show all references

References:
[1]

F. Alizadeh and D. Goldfarb, Second-order cone Programming,, Math. Program., 95 (2003), 3.  doi: 10.1007/s10107-002-0339-5.  Google Scholar

[2]

A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust Optimization,, Princeton University Press, (2009).  doi: 10.1515/9781400831050.  Google Scholar

[3]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, Springer, (2000).  doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[4]

X. J. Chen, Smoothing methods for complementarity problems and their applications: A survey,, J. Oper. Res. Soc. Japan, 43 (2000), 32.  doi: 10.1016/S0453-4514(00)88750-5.  Google Scholar

[5]

X. -D. Chen, D. Sun and J. Sun, Complementarity functions and numerical experiments for second-order cone complementarity problems,, Comput. Optim. Appl., 25 (2003), 39.  doi: 10.1023/A:1022996819381.  Google Scholar

[6]

X. J. Chen and S. H. Xiang, Computation of error bounds for P-matrix linear complementarity problems,, Math. Program., 106 (2006), 513.  doi: 10.1007/s10107-005-0645-9.  Google Scholar

[7]

X. Chi, Z. Wan and Z. Hao, The models of bilevel programming with lower level second-order cone programs,, J. Inequal. Appl., 2014 (2014).  doi: 10.1186/1029-242X-2014-168.  Google Scholar

[8]

S. Dempe, Foundations of Bilevel Programming,, Kluwer Academic Publishers, (2002).   Google Scholar

[9]

S. Dempe, Bilevel Optimization Problem: Existence of Optimal Solutions and Optimality Conditions, Report of CIMPA school, University of Delhi,, 2013., ().   Google Scholar

[10]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical programming with complementarity constraints?,, Math. Program., 131 (2012), 37.  doi: 10.1007/s10107-010-0342-1.  Google Scholar

[11]

C. Ding, D. Sun and J. Y. Ye, First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints,, Math. Program., 147 (2014), 539.  doi: 10.1007/s10107-013-0735-z.  Google Scholar

[12]

T. Ejiri, A Smoothing Method for Mathematical Programs with Second-Order Cone Complementarity Constraints,, Master thesis, (2007).   Google Scholar

[13]

U. Faraut and A. Korányi, Analysis on Symmetric Cones,, Oxford University Press, (1994).   Google Scholar

[14]

M. S. Gowda, R. Sznajder and J. Tao, Some P-properties for linear transformations on Euclidean Jordan algebras,, Linear Algebra Appl., 393 (2004), 203.  doi: 10.1016/j.laa.2004.03.028.  Google Scholar

[15]

P. B. Hermanns and N. V. Thoai, Global optimization algorithm for solving bilevel programming problems with quadratic lower levels,, J. Ind. Manag Optim., 6 (2010), 177.  doi: 10.3934/jimo.2010.6.177.  Google Scholar

[16]

Z. H. Huang and N. Lu, Global and global linear convergence of smoothing algorithm for the Cartesian $P_{*}(\kappa)$-SCLCP,, J. Ind. Manag Optim., 8 (2012), 67.  doi: 10.3934/jimo.2012.8.67.  Google Scholar

[17]

Y. Jiang, Optimization Problems with Second-Order Cone Equilibrium Constraints, (Chinese), Ph.D. thesis, (2011).   Google Scholar

[18]

H. Th. Jongen and G.-W. Weber, Nonlinear optimization: Characterization of structural optimization,, J. Glob. Optim., 1 (1991), 47.  doi: 10.1007/BF00120665.  Google Scholar

[19]

M. Kojima, Strongly stable stationary solutions in nonlinear programs,, in Analysis and Computation of Fixed Points (eds. S.M. Robinson), 43 (1980), 93.   Google Scholar

[20]

Y. J. Kuo and H. D. Mittelmann, Interior point methods for second-order cone programming and OR applications,, Comput. Optim. Appl., 28 (2004), 255.  doi: 10.1023/B:COAP.0000033964.95511.23.  Google Scholar

[21]

X. H. Liu and W. Z. Gu, Smoothing Newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity problems over symmetric cones,, J. Ind. Manag Optim., 6 (2010), 363.  doi: 10.3934/jimo.2010.6.363.  Google Scholar

[22]

Y. Liu and L. Zhang, Convergence analysis of the augmented Lagrangian method for nonlinear second-order cone optimization problems,, Nonlinear Anal., 67 (2007), 1359.  doi: 10.1016/j.na.2006.07.022.  Google Scholar

[23]

M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of second-order cone programming,, Linear Algebra Appl., 284 (1998), 193.  doi: 10.1016/S0024-3795(98)10032-0.  Google Scholar

[24]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, vol.I : Basic Theory,, Springer, (2006).   Google Scholar

[25]

J. V. Outrata and D. Sun, On the coderivative of the projection operator onto the second-order cone,, Set-Valued Anal., 16 (2008), 999.  doi: 10.1007/s11228-008-0092-x.  Google Scholar

[26]

R. T. Rockafellar and R. J. -B. Wets, Variational Analysis,, Springer, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[27]

J. Wu, L. Zhang and Y. Zhang, A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations,, J. Glob. Optim., 55 (2013), 359.  doi: 10.1007/s10898-012-9880-9.  Google Scholar

[28]

H. Yamamura, T. Okuno, S. Hayashi and M. Fukushima, A smoothing SQP method for mathematical programms with linear second-order cone complementarity constraints,, Pac. J. Optim., 9 (2013), 345.   Google Scholar

[29]

T. Yan and M. Fukushima, Smoothing method for mathematical programs with symmetric cone complementarity constraints,, Optimization, 60 (2011), 113.  doi: 10.1080/02331934.2010.541458.  Google Scholar

[30]

Y. Zhang, L. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints,, Set-Valued Anal., 19 (2011), 609.  doi: 10.1007/s11228-011-0190-z.  Google Scholar

[1]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[2]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[3]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[4]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[5]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[6]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[9]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[10]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[11]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[12]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[13]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[14]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[15]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[16]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[17]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[18]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[19]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[20]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (119)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]