-
Previous Article
Bounds on price of anarchy on linear cost functions
- JIMO Home
- This Issue
-
Next Article
Numerical solution of a pursuit-evasion differential game involving two spacecraft in low earth orbit
Modelling and optimal control of blood glucose levels in the human body
1. | Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia, Australia, Australia |
References:
[1] |
F. Chee and T. Fernando, Closed Loop Control of Blood Glucose,, Springer, (2007).
|
[2] |
R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-Benedetti, M. O. Federici, T. R. Pieber, H. C. Schaller, L. Schaupp, T. Vering and M. E. Wilinska, Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes,, Physiological Measurement, 25 (2004), 905.
doi: 10.1088/0967-3334/25/4/010. |
[3] |
IDF Diabetes Atlas, 5th Edition, International Diabetes Federation,, Brussels, (2011). Google Scholar |
[4] |
L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software: Theory and User Manual Version 3,, University of Western Australia, (2004). Google Scholar |
[5] |
M. Korach-André, H. Roth, D. Barnoud, M. Péan, F. Péronnent and X. Leverve, Glucose appearance in the peripheral circulation and liver glucose output in men after a large C starch meal,, The American Journal of Clinical Nutrition, 80 (2004), 881. Google Scholar |
[6] |
L. Kovács, B. Kulcsár, A. György and Z. Benyó, Robust servo control of a novel type 1 diabetic model,, Optimal Control Applications and Methods, 32 (2011), 215.
doi: 10.1002/oca.963. |
[7] |
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275.
doi: 10.3934/jimo.2014.10.275. |
[8] |
W. Liu and F. Tang, Modelling a simplified regulatory system of blood glucose at molecular levels,, Journal of Theoretical Biology, 252 (2008), 608.
doi: 10.1016/j.jtbi.2008.02.021. |
[9] |
R. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica, 44 (2008), 2923.
doi: 10.1016/j.automatica.2008.04.011. |
[10] |
G. Marchetti, M. Barolo, L. Jovanovic and H. Zisser, An improved PID switching control strategy for type 1 diabetes,, In Proceeding of the 28th IEEE EMBS Annual International Conference, (2006), 5041.
doi: 10.1109/IEMBS.2006.259541. |
[11] |
R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1993).
doi: 10.1142/9789812832542. |
[12] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, Longman Scientific and Technical, (1991).
|
show all references
References:
[1] |
F. Chee and T. Fernando, Closed Loop Control of Blood Glucose,, Springer, (2007).
|
[2] |
R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-Benedetti, M. O. Federici, T. R. Pieber, H. C. Schaller, L. Schaupp, T. Vering and M. E. Wilinska, Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes,, Physiological Measurement, 25 (2004), 905.
doi: 10.1088/0967-3334/25/4/010. |
[3] |
IDF Diabetes Atlas, 5th Edition, International Diabetes Federation,, Brussels, (2011). Google Scholar |
[4] |
L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software: Theory and User Manual Version 3,, University of Western Australia, (2004). Google Scholar |
[5] |
M. Korach-André, H. Roth, D. Barnoud, M. Péan, F. Péronnent and X. Leverve, Glucose appearance in the peripheral circulation and liver glucose output in men after a large C starch meal,, The American Journal of Clinical Nutrition, 80 (2004), 881. Google Scholar |
[6] |
L. Kovács, B. Kulcsár, A. György and Z. Benyó, Robust servo control of a novel type 1 diabetic model,, Optimal Control Applications and Methods, 32 (2011), 215.
doi: 10.1002/oca.963. |
[7] |
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275.
doi: 10.3934/jimo.2014.10.275. |
[8] |
W. Liu and F. Tang, Modelling a simplified regulatory system of blood glucose at molecular levels,, Journal of Theoretical Biology, 252 (2008), 608.
doi: 10.1016/j.jtbi.2008.02.021. |
[9] |
R. Loxton, K. L. Teo and V. Rehbock, Optimal control problems with multiple characteristic time points in the objective and constraints,, Automatica, 44 (2008), 2923.
doi: 10.1016/j.automatica.2008.04.011. |
[10] |
G. Marchetti, M. Barolo, L. Jovanovic and H. Zisser, An improved PID switching control strategy for type 1 diabetes,, In Proceeding of the 28th IEEE EMBS Annual International Conference, (2006), 5041.
doi: 10.1109/IEMBS.2006.259541. |
[11] |
R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy,, World Scientific, (1993).
doi: 10.1142/9789812832542. |
[12] |
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, Longman Scientific and Technical, (1991).
|
[1] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[2] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[3] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[6] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[7] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[8] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[9] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[10] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[11] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[12] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[13] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[14] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[15] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[16] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[17] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[18] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[19] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[20] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]