-
Previous Article
The inventory model under supplier's partial trade credit policy in a supply chain system
- JIMO Home
- This Issue
-
Next Article
Modelling and optimal control of blood glucose levels in the human body
Bounds on price of anarchy on linear cost functions
1. | Department of Management Science and Engineering, School of Economics and Management, Southeast University, Nanjing, 210096, China, China |
2. | School of Mathematical Sciences, Jiangsu Key Labratory for NSLSCS, Nanjing Normal University, Nanjing, 210023 |
References:
[1] |
P. Dubey, Inefficiency of Nash equilibria,, Mathematics of Operations Research, 11 (1986), 1.
doi: 10.1287/moor.11.1.1. |
[2] |
J. H. Hammond, Solving Asymmetric Variational Inequality problems and Systems of Equations with Generalized Nonlinear Programming Algorithms,, PhD Thesis, (1985).
|
[3] |
D. Han, J. Sun and M. Ang, New bounds for the price of anarchy under nonlinear and asymmetric costs,, Optimization, 63 (2014), 271.
doi: 10.1080/02331934.2011.641017. |
[4] |
R. Jahari and J. N. Tsitsiklis, Network resource allocation and a congestion game,, Proceedings of the Annual Allerton Conference on Communication Control and Computing, 41 (2003), 769. Google Scholar |
[5] |
E. Koutsoupias and C. H. Papadimitriou, Worst-case equilibria,, Computer Science Review, 32 (2009), 65.
doi: 10.1016/j.cosrev.2009.04.003. |
[6] |
G. Perakis, The "price of anarchy" under nonlinear and asymmetric costs,, Mathematics of Operations Research, 32 (2007), 614.
doi: 10.1287/moor.1070.0258. |
[7] |
T. Roughgarden and E. Tardos, How bad is selfish routing,, Journal of the ACM, 49 (2002), 236.
doi: 10.1145/506147.506153. |
[8] |
R. Soeiro, A. Mousa and T. R. Oliveira and A. A. Pinto, Dynamics of human decisions,, Journal of Industrial & Management Optimization, 1 (2014), 121.
doi: 10.3934/jdg.2014.1.121. |
[9] |
J. Sun, A convergence analysis for a convex version of Dikin's algorithm,, Annals of Operations Research, 62 (1996), 357.
doi: 10.1007/BF02206823. |
[10] |
Y. Viossat, Game dynamics and Nash equilibria,, Journal of Industrial & Management Optimization, 1 (2014), 537.
doi: 10.3934/jdg.2014.1.537. |
show all references
References:
[1] |
P. Dubey, Inefficiency of Nash equilibria,, Mathematics of Operations Research, 11 (1986), 1.
doi: 10.1287/moor.11.1.1. |
[2] |
J. H. Hammond, Solving Asymmetric Variational Inequality problems and Systems of Equations with Generalized Nonlinear Programming Algorithms,, PhD Thesis, (1985).
|
[3] |
D. Han, J. Sun and M. Ang, New bounds for the price of anarchy under nonlinear and asymmetric costs,, Optimization, 63 (2014), 271.
doi: 10.1080/02331934.2011.641017. |
[4] |
R. Jahari and J. N. Tsitsiklis, Network resource allocation and a congestion game,, Proceedings of the Annual Allerton Conference on Communication Control and Computing, 41 (2003), 769. Google Scholar |
[5] |
E. Koutsoupias and C. H. Papadimitriou, Worst-case equilibria,, Computer Science Review, 32 (2009), 65.
doi: 10.1016/j.cosrev.2009.04.003. |
[6] |
G. Perakis, The "price of anarchy" under nonlinear and asymmetric costs,, Mathematics of Operations Research, 32 (2007), 614.
doi: 10.1287/moor.1070.0258. |
[7] |
T. Roughgarden and E. Tardos, How bad is selfish routing,, Journal of the ACM, 49 (2002), 236.
doi: 10.1145/506147.506153. |
[8] |
R. Soeiro, A. Mousa and T. R. Oliveira and A. A. Pinto, Dynamics of human decisions,, Journal of Industrial & Management Optimization, 1 (2014), 121.
doi: 10.3934/jdg.2014.1.121. |
[9] |
J. Sun, A convergence analysis for a convex version of Dikin's algorithm,, Annals of Operations Research, 62 (1996), 357.
doi: 10.1007/BF02206823. |
[10] |
Y. Viossat, Game dynamics and Nash equilibria,, Journal of Industrial & Management Optimization, 1 (2014), 537.
doi: 10.3934/jdg.2014.1.537. |
[1] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[2] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[3] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[4] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[5] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[6] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[7] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[8] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[9] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[10] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[11] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[12] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[13] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[14] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[15] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[16] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]