-
Previous Article
On EOQ cost models with arbitrary purchase and transportation costs
- JIMO Home
- This Issue
-
Next Article
The inventory model under supplier's partial trade credit policy in a supply chain system
A closed-form solution for outperformance options with stochastic correlation and stochastic volatility
1. | BBVA and University Institute for Economic and Social Analysis, University of Alcalá, Mailing address: c/ Sauceda, 28 Edicio ASIA, 28050, Madrid, Spain |
  This article considers a multi-asset model based on Wishart processes that accounts for stochastic volatility and for stochastic correlations between the assets returns, as well as between their volatilities. Under the assumptions of the model this article provides semi-closed form solutions for the price of outperformance options. The article shows that the price of these options depends crucially on the term structure of the correlation corresponding to the assets returns. Furthermore, the comparison of the prices obtained under this model and under other models with constant correlations commonly used by financial institutions reveals the existence of a stochastic correlation premium.
References:
[1] |
M. Avellaneda and Y. Zhu, An e-arch model for the term structure of implied volatility of fx options,, Applied Mathematical Finance, 11 (1997), 81.
doi: 10.2139/ssrn.15150. |
[2] |
G. Bakshi, C. Cao and R. Stelzer, Do call prices and the underlying stock always move in the same direction?,, Review of Financial Studies, 13 (2000), 549.
doi: 10.1093/rfs/13.3.549. |
[3] |
C. Ball and W. Torous, Stochastic correlation across international stock markets,, Journal of Empirical Finance, 7 (2000), 373.
doi: 10.1016/S0927-5398(00)00017-7. |
[4] |
O. Barndorff-Nielsen and R. Stelzer, The multivariate supou stochastic volatility model,, Mathematical Finance, 23 (2013), 275.
doi: 10.1111/j.1467-9965.2011.00494.x. |
[5] |
F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.
doi: 10.1086/260062. |
[6] |
P. Boyle, Options: A Monte Carlo approach,, Journal of Financial Economics, 4 (1977), 323.
doi: 10.1016/0304-405X(77)90005-8. |
[7] |
N. Branger and M. Muck, Keep on smiling? volatility surfaces and the pricing of quanto options when all covariances are stochastic,, Journal of Banking and Finance, 36 (2012), 1577. Google Scholar |
[8] |
M. Bru, Wishart processes,, Journal of Theoretical Probability, 4 (1991), 725.
doi: 10.1007/BF01259552. |
[9] |
P. Carr and L. Wu, Variance risk premiums,, Review of Financial Studies, 22 (2009), 1311.
doi: 10.1093/rfs/hhn038. |
[10] |
R. Cont and J. Da Fonseca, Dynamics of implied volatility surfaces,, Quantitative Finance, 2 (2002), 45.
doi: 10.1088/1469-7688/2/1/304. |
[11] |
J. Da Fonseca, M. Grasselli and C. Tebaldi, Option pricing when correlations are stochastic: An analytical framework,, Review of Derivatives Research, 10 (2007), 151.
doi: 10.1007/s11147-008-9018-x. |
[12] |
J. Da Fonseca, M. Grasselli and C. Tebaldi, A multifactor volatility Heston model,, Quantitative Finance, 8 (2008), 591.
doi: 10.1080/14697680701668418. |
[13] |
T. Daglish, J. Hull and W. Suo, Volatility surfaces, theory, rules of thumb and empirical evidence,, Quantitative Finance, 7 (2007), 507.
doi: 10.1080/14697680601087883. |
[14] |
E. Derman, Outperformance options,, in The Handbook of Exotic Options: Instruments, (1996). Google Scholar |
[15] |
E. Derman, Regimes of volatility,, Risk, 4 (1999), 55. Google Scholar |
[16] |
E. Derman and I. Kani, The volatility smile and its implied tree,, Quantitative Strategies Research Notes, (). Google Scholar |
[17] |
E. Derman, I. Kani and J. Zou, The local volatility surface: unlocking the information in index option prices,, Quantitative Strategies Research Notes, 52 (1996), 1.
doi: 10.2469/faj.v52.n4.2008. |
[18] |
E. Derman and P. Wilmott, Perfect models, imperfect world,, Business Week, (). Google Scholar |
[19] |
D. Duffie, J. Pan and K. Singleton, Transform analysis and asset pricing for affine jump-diffusions,, Econometrica, 68 (2000), 1343.
doi: 10.1111/1468-0262.00164. |
[20] |
B. Dupire, Pricing with a smile,, Risk, 7 (1994), 18. Google Scholar |
[21] |
S. Fischer, Call option pricing when the exercise price is uncertain, and the valuation of index bonds,, Journal of Finance, 33 (1978), 169.
doi: 10.2307/2326357. |
[22] |
R. Franks and E. Schwartz, The stochastic behavior of market variance implied in the price of index options,, The Economic Journal, 101 (1991), 1460.
doi: 10.2307/2234896. |
[23] |
J. Gatheral, The Volatility Surface. A Practitioner's Guide,, John Wiley and Sons, (2006). Google Scholar |
[24] |
C. Gourieroux and R. Sufana, Derivative Pricing with Multivariate Stochastic Volatility: Application to Credit Risk,, Les Cahiers du CREF, (2005).
doi: 10.2139/ssrn.757312. |
[25] |
S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, Review of Financial Studies, 6 (1993), 327.
doi: 10.1093/rfs/6.2.327. |
[26] |
J. Hull and W. Suo, A methodology for assessing model risk and its application to the implied volatility function model,, Journal of Financial and Quantitative Analysis, 37 (2002), 297.
doi: 10.2307/3595007. |
[27] |
J. Hull and A. White, The pricing of options on assets with stochastic volatilities,, Journal of Financial and Quantitative Analysis, 42 (1987), 281.
doi: 10.2307/2328253. |
[28] |
T. Hurd and Z. Zhou, A fourier transform method for spread option pricing,, SIAM Journal on Financial Mathematics, 1 (2010), 142.
doi: 10.1137/090750421. |
[29] |
M. Krekel, J. de Kock, R. Korn and T. Man, An analysis of pricing methods for basket options,, Wilmott magazine, (): 82. Google Scholar |
[30] |
R. Lee, The moment formula for implied volatility at extreme strikes,, Mathematical Finance, 14 (2004), 469.
doi: 10.1111/j.0960-1627.2004.00200.x. |
[31] |
M. Leippold and F. Trojani, Asset pricing with matrix jump diffusions,, Working paper, (2008).
doi: 10.2139/ssrn.1274482. |
[32] |
A. Lewis, Option Valuation under Stochastic Volatility with Mathematica Code,, Finance Press, (2000).
|
[33] |
M. Loretan and W. English, Evaluating correlation breakdowns during periods of market volatility,, Working paper, (2000).
doi: 10.2139/ssrn.231857. |
[34] |
J. Marabel Romo, Fitting the skew with an analytic local volatility function,, International Review of Applied Financial Issues and Economics, 3 (2011), 721. Google Scholar |
[35] |
J. Marabel Romo, Worst-of options and correlation skew under a stochastic correlation framework,, International journal of Theoretical and Applied Finance, 7 (). Google Scholar |
[36] |
W. Margrabe, The value of an option to exchange one asset for another,, Journal of Finance, 33 (1978), 177.
doi: 10.2307/2326358. |
[37] |
M. Pan, Y. Liu and H. Roth, Term structure of return correlations and international diversification: evidence from european stock markets,, The European Journal of Finance, 7 (2001), 144.
doi: 10.1080/13518470151141477. |
[38] |
M. Rubinstein, Implied binomial trees,, Journal of Finance, 49 (1994), 771.
doi: 10.2307/2329207. |
[39] |
B. Solnik, C. Boucrelle and Y. Le Fur, International market correlation and volatility,, Financial Analysts Journal, 52 (1996), 17.
doi: 10.2469/faj.v52.n5.2021. |
show all references
References:
[1] |
M. Avellaneda and Y. Zhu, An e-arch model for the term structure of implied volatility of fx options,, Applied Mathematical Finance, 11 (1997), 81.
doi: 10.2139/ssrn.15150. |
[2] |
G. Bakshi, C. Cao and R. Stelzer, Do call prices and the underlying stock always move in the same direction?,, Review of Financial Studies, 13 (2000), 549.
doi: 10.1093/rfs/13.3.549. |
[3] |
C. Ball and W. Torous, Stochastic correlation across international stock markets,, Journal of Empirical Finance, 7 (2000), 373.
doi: 10.1016/S0927-5398(00)00017-7. |
[4] |
O. Barndorff-Nielsen and R. Stelzer, The multivariate supou stochastic volatility model,, Mathematical Finance, 23 (2013), 275.
doi: 10.1111/j.1467-9965.2011.00494.x. |
[5] |
F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.
doi: 10.1086/260062. |
[6] |
P. Boyle, Options: A Monte Carlo approach,, Journal of Financial Economics, 4 (1977), 323.
doi: 10.1016/0304-405X(77)90005-8. |
[7] |
N. Branger and M. Muck, Keep on smiling? volatility surfaces and the pricing of quanto options when all covariances are stochastic,, Journal of Banking and Finance, 36 (2012), 1577. Google Scholar |
[8] |
M. Bru, Wishart processes,, Journal of Theoretical Probability, 4 (1991), 725.
doi: 10.1007/BF01259552. |
[9] |
P. Carr and L. Wu, Variance risk premiums,, Review of Financial Studies, 22 (2009), 1311.
doi: 10.1093/rfs/hhn038. |
[10] |
R. Cont and J. Da Fonseca, Dynamics of implied volatility surfaces,, Quantitative Finance, 2 (2002), 45.
doi: 10.1088/1469-7688/2/1/304. |
[11] |
J. Da Fonseca, M. Grasselli and C. Tebaldi, Option pricing when correlations are stochastic: An analytical framework,, Review of Derivatives Research, 10 (2007), 151.
doi: 10.1007/s11147-008-9018-x. |
[12] |
J. Da Fonseca, M. Grasselli and C. Tebaldi, A multifactor volatility Heston model,, Quantitative Finance, 8 (2008), 591.
doi: 10.1080/14697680701668418. |
[13] |
T. Daglish, J. Hull and W. Suo, Volatility surfaces, theory, rules of thumb and empirical evidence,, Quantitative Finance, 7 (2007), 507.
doi: 10.1080/14697680601087883. |
[14] |
E. Derman, Outperformance options,, in The Handbook of Exotic Options: Instruments, (1996). Google Scholar |
[15] |
E. Derman, Regimes of volatility,, Risk, 4 (1999), 55. Google Scholar |
[16] |
E. Derman and I. Kani, The volatility smile and its implied tree,, Quantitative Strategies Research Notes, (). Google Scholar |
[17] |
E. Derman, I. Kani and J. Zou, The local volatility surface: unlocking the information in index option prices,, Quantitative Strategies Research Notes, 52 (1996), 1.
doi: 10.2469/faj.v52.n4.2008. |
[18] |
E. Derman and P. Wilmott, Perfect models, imperfect world,, Business Week, (). Google Scholar |
[19] |
D. Duffie, J. Pan and K. Singleton, Transform analysis and asset pricing for affine jump-diffusions,, Econometrica, 68 (2000), 1343.
doi: 10.1111/1468-0262.00164. |
[20] |
B. Dupire, Pricing with a smile,, Risk, 7 (1994), 18. Google Scholar |
[21] |
S. Fischer, Call option pricing when the exercise price is uncertain, and the valuation of index bonds,, Journal of Finance, 33 (1978), 169.
doi: 10.2307/2326357. |
[22] |
R. Franks and E. Schwartz, The stochastic behavior of market variance implied in the price of index options,, The Economic Journal, 101 (1991), 1460.
doi: 10.2307/2234896. |
[23] |
J. Gatheral, The Volatility Surface. A Practitioner's Guide,, John Wiley and Sons, (2006). Google Scholar |
[24] |
C. Gourieroux and R. Sufana, Derivative Pricing with Multivariate Stochastic Volatility: Application to Credit Risk,, Les Cahiers du CREF, (2005).
doi: 10.2139/ssrn.757312. |
[25] |
S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options,, Review of Financial Studies, 6 (1993), 327.
doi: 10.1093/rfs/6.2.327. |
[26] |
J. Hull and W. Suo, A methodology for assessing model risk and its application to the implied volatility function model,, Journal of Financial and Quantitative Analysis, 37 (2002), 297.
doi: 10.2307/3595007. |
[27] |
J. Hull and A. White, The pricing of options on assets with stochastic volatilities,, Journal of Financial and Quantitative Analysis, 42 (1987), 281.
doi: 10.2307/2328253. |
[28] |
T. Hurd and Z. Zhou, A fourier transform method for spread option pricing,, SIAM Journal on Financial Mathematics, 1 (2010), 142.
doi: 10.1137/090750421. |
[29] |
M. Krekel, J. de Kock, R. Korn and T. Man, An analysis of pricing methods for basket options,, Wilmott magazine, (): 82. Google Scholar |
[30] |
R. Lee, The moment formula for implied volatility at extreme strikes,, Mathematical Finance, 14 (2004), 469.
doi: 10.1111/j.0960-1627.2004.00200.x. |
[31] |
M. Leippold and F. Trojani, Asset pricing with matrix jump diffusions,, Working paper, (2008).
doi: 10.2139/ssrn.1274482. |
[32] |
A. Lewis, Option Valuation under Stochastic Volatility with Mathematica Code,, Finance Press, (2000).
|
[33] |
M. Loretan and W. English, Evaluating correlation breakdowns during periods of market volatility,, Working paper, (2000).
doi: 10.2139/ssrn.231857. |
[34] |
J. Marabel Romo, Fitting the skew with an analytic local volatility function,, International Review of Applied Financial Issues and Economics, 3 (2011), 721. Google Scholar |
[35] |
J. Marabel Romo, Worst-of options and correlation skew under a stochastic correlation framework,, International journal of Theoretical and Applied Finance, 7 (). Google Scholar |
[36] |
W. Margrabe, The value of an option to exchange one asset for another,, Journal of Finance, 33 (1978), 177.
doi: 10.2307/2326358. |
[37] |
M. Pan, Y. Liu and H. Roth, Term structure of return correlations and international diversification: evidence from european stock markets,, The European Journal of Finance, 7 (2001), 144.
doi: 10.1080/13518470151141477. |
[38] |
M. Rubinstein, Implied binomial trees,, Journal of Finance, 49 (1994), 771.
doi: 10.2307/2329207. |
[39] |
B. Solnik, C. Boucrelle and Y. Le Fur, International market correlation and volatility,, Financial Analysts Journal, 52 (1996), 17.
doi: 10.2469/faj.v52.n5.2021. |
[1] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[2] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[3] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[4] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[5] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[6] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[7] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[8] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[9] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[10] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[11] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[12] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[13] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[14] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[15] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]